The impact of non-ionizing electromagnetic radiation emitting devices on the male reproductive system
DOI:
https://doi.org/10.12775/QS.2025.38.57821Keywords
non-ionizing radiation, male reproductive system, infertility, mobile phone, oxidative stressAbstract
With today's technological advances, people spend more and more time using various devices that emit non-ionizing radiation (NIR), such as mobile phones, laptops or WiFi networks. Nowadays, the role of these devices in the human lifestyle seems to make exposure to NIR unavoidable. This exposure, especially when prolonged, has been reported as one of the possible lifestyle factors contributing to reduced fertility, especially in men. The aim of the study was to analyse the current state of knowledge on the impact of NIR emitted by modern devices on the functioning of the male reproductive system and to identify possible mechanisms behind it. The research method used was a literature review on the PubMed platform. A total number of 35 articles from years 2007-2024 were analysed.
According to the scientific literature, exposure to NIR may affect spermatozoa through thermal and non-thermal mechanisms, the most important of which appears to be increased production of reactive oxygen species (ROS), which leads to oxidative stress and cellular damage in the reproductive system. NIR exposure can adversely affect semen parameters such as sperm motility, viability and concentration, alter hormonal mechanisms regulating reproduction and induce morphological changes in reproductive tissues. However, studies conducted in this context often provide inconsistent results, hence the exact effect of NIR on the male reproductive system remains unknown. Therefore, further research is needed to accurately determine the effects of NIR on male fertility and to provide appropriate health recommendations.
References
1. Yadav, H., Rai, U., & Singh, R. (2021). Radiofrequency radiation: A possible threat to male fertility. Reproductive toxicology (Elmsford, N.Y.), 100, 90–100. https://doi.org/10.1016/j.reprotox.2021.01.007
2. Mailankot, M., Kunnath, A. P., Jayalekshmi, H., Koduru, B., & Valsalan, R. (2009). Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics (Sao Paulo, Brazil), 64(6), 561–565. https://doi.org/10.1590/s1807-59322009000600011
3. Perri, A., & Bossio, S. (2024). Male infertility: the role of lifestyle and environmental factors. Minerva medica, 115(4), 427–429. https://doi.org/10.23736/S0026-4806.24.09461-8
4. Bhattacharya, I., Sharma, S. S., & Majumdar, S. S. (2024). Etiology of Male Infertility: an Update. Reproductive sciences (Thousand Oaks, Calif.), 31(4), 942–965. https://doi.org/10.1007/s43032-023-01401-x
5. Eisenberg, M. L., Esteves, S. C., Lamb, D. J., Hotaling, J. M., Giwercman, A., Hwang, K., & Cheng, Y. S. (2023). Male infertility. Nature reviews. Disease primers, 9(1), 49. https://doi.org/10.1038/s41572-023-00459-w
6. Zeleke, B. M., Brzozek, C., Bhatt, C. R., Abramson, M. J., Freudenstein, F., Croft, R. J., Wiedemann, P. M., & Benke, G. (2022). Mobile phone carrying locations and risk perception of men: A cross-sectional study. PloS one, 17(6), e0269457. https://doi.org/10.1371/journal.pone.0269457
7. Manna, D., & Ghosh, R. (2016). Effect of radiofrequency radiation in cultured mammalian cells: A review. Electromagnetic biology and medicine, 35(3), 265–301. https://doi.org/10.3109/15368378.2015.1092158
8. Gautam, R., Priyadarshini, E., Nirala, J., & Rajamani, P. (2022). Impact of nonionizing electromagnetic radiation on male infertility: an assessment of the mechanism and consequences. International journal of radiation biology, 98(6), 1063–1073. https://doi.org/10.1080/09553002.2020.1859154
9. Durairajanayagam, D., Agarwal, A., & Ong, C. (2015). Causes, effects and molecular mechanisms of testicular heat stress. Reproductive biomedicine online, 30(1), 14–27. https://doi.org/10.1016/j.rbmo.2014.09.018
10. Gye, M. C., & Park, C. J. (2012). Effect of electromagnetic field exposure on the reproductive system. Clinical and experimental reproductive medicine, 39(1), 1–9. https://doi.org/10.5653/cerm.2012.39.1.1
11. D'Autréaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature reviews. Molecular cell biology, 8(10), 813–824. https://doi.org/10.1038/nrm2256
12. Kesari, K. K., Kumar, S., Nirala, J., Siddiqui, M. H., & Behari, J. (2013). Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern. Cell biochemistry and biophysics, 65(2), 85–96. https://doi.org/10.1007/s12013-012-9414-6
13. Guo, Q., Li, F., Duan, Y., Wen, C., Wang, W., Zhang, L., Huang, R., & Yin, Y. (2020). Oxidative stress, nutritional antioxidants and beyond. Science China. Life sciences, 63(6), 866–874. https://doi.org/10.1007/s11427-019-9591-5
14. Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A. I. (2021). Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. European journal of medicinal chemistry, 209, 112891. https://doi.org/10.1016/j.ejmech.2020.112891
15. Altun, G., Deniz, Ö. G., Yurt, K. K., Davis, D., & Kaplan, S. (2018). Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. Environmental research, 167, 700–707. https://doi.org/10.1016/j.envres.2018.02.031
16. Houston, B. J., Nixon, B., King, B. V., De Iuliis, G. N., & Aitken, R. J. (2016). The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction (Cambridge, England), 152(6), R263–R276. https://doi.org/10.1530/REP-16-0126
17. Yu, G., Bai, Z., Song, C., Cheng, Q., Wang, G., Tang, Z., & Yang, S. (2021). Current progress on the effect of mobile phone radiation on sperm quality: An updated systematic review and meta-analysis of human and animal studies. Environmental pollution (Barking, Essex : 1987), 282, 116952. https://doi.org/10.1016/j.envpol.2021.116952
18. Kesari, K. K., Agarwal, A., & Henkel, R. (2018). Radiations and male fertility. Reproductive biology and endocrinology : RB&E, 16(1), 118. https://doi.org/10.1186/s12958-018-0431-1
19. Ghanbari, M., Mortazavi, S. B., Khavanin, A., & Khazaei, M. (2013). The Effects of Cell Phone Waves (900 MHz-GSM Band) on Sperm Parameters and Total Antioxidant Capacity in Rats. International journal of fertility & sterility, 7(1), 21–28.
20. Liu, Q., Si, T., Xu, X., Liang, F., Wang, L., & Pan, S. (2015). Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats. Reproductive health, 12, 65. https://doi.org/10.1186/s12978-015-0062-3
21. Kesari, K. K., & Behari, J. (2012). Evidence for mobile phone radiation exposure effects on reproductive pattern of male rats: role of ROS. Electromagnetic biology and medicine, 31(3), 213–222. https://doi.org/10.3109/15368378.2012.700292
22. Gautam, R., Pardhiya, S., Nirala, J. P., Sarsaiya, P., & Rajamani, P. (2024). Effects of 4G mobile phone radiation exposure on reproductive, hepatic, renal, and hematological parameters of male Wistar rat. Environmental science and pollution research international, 31(3), 4384–4399. https://doi.org/10.1007/s11356-023-31367-x
23. Negi, P., & Singh, R. (2021). Association between reproductive health and nonionizing radiation exposure. Electromagnetic biology and medicine, 40(1), 92–102. https://doi.org/10.1080/15368378.2021.1874973
24. Shahin, S., Singh, S. P., & Chaturvedi, C. M. (2018). 1800 MHz mobile phone irradiation induced oxidative and nitrosative stress leads to p53 dependent Bax mediated testicular apoptosis in mice, Mus musculus. Journal of cellular physiology, 233(9), 7253–7267. https://doi.org/10.1002/jcp.26558
25. Çetkin, M., Kızılkan, N., Demirel, C., Bozdağ, Z., Erkılıç, S., & Erbağcı, H. (2017). Quantitative changes in testicular structure and function in rat exposed to mobile phone radiation. Andrologia, 49(10), 10.1111/and.12761. https://doi.org/10.1111/and.12761
26. Maluin, S. M., Osman, K., Jaffar, F. H. F., & Ibrahim, S. F. (2021). Effect of Radiation Emitted by Wireless Devices on Male Reproductive Hormones: A Systematic Review. Frontiers in physiology, 12, 732420. https://doi.org/10.3389/fphys.2021.732420
27. Yu, G., Tang, Z., Chen, H., Chen, Z., Wang, L., Cao, H., Wang, G., Xing, J., Shen, H., Cheng, Q., Li, D., Wang, G., Xiang, Y., Guan, Y., Zhu, Y., Liu, Z., & Bai, Z. (2020). Long-term exposure to 4G smartphone radiofrequency electromagnetic radiation diminished male reproductive potential by directly disrupting Spock3-MMP2-BTB axis in the testes of adult rats. The Science of the total environment, 698, 133860. https://doi.org/10.1016/j.scitotenv.2019.133860
28. Oh, J. J., Byun, S. S., Lee, S. E., Choe, G., & Hong, S. K. (2018). Effect of Electromagnetic Waves from Mobile Phones on Spermatogenesis in the Era of 4G-LTE. BioMed research international, 2018, 1801798. https://doi.org/10.1155/2018/1801798
29. Adams, J. A., Galloway, T. S., Mondal, D., Esteves, S. C., & Mathews, F. (2014). Effect of mobile telephones on sperm quality: a systematic review and meta-analysis. Environment international, 70, 106–112. https://doi.org/10.1016/j.envint.2014.04.015
30. Agarwal, A., Desai, N. R., Makker, K., Varghese, A., Mouradi, R., Sabanegh, E., & Sharma, R. (2009). Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertility and sterility, 92(4), 1318–1325. https://doi.org/10.1016/j.fertnstert.2008.08.022
31. Hassanzadeh-Taheri, M., Khalili, M. A., Hosseininejad Mohebati, A., Zardast, M., Hosseini, M., Palmerini, M. G., & Doostabadi, M. R. (2022). The detrimental effect of cell phone radiation on sperm biological characteristics in normozoospermic. Andrologia, 54(1), e14257. https://doi.org/10.1111/and.14257
32. Desai, N. R., Kesari, K. K., & Agarwal, A. (2009). Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reproductive biology and endocrinology : RB&E, 7, 114. https://doi.org/10.1186/1477-7827-7-114
33. Santini, S. J., Cordone, V., Falone, S., Mijit, M., Tatone, C., Amicarelli, F., & Di Emidio, G. (2018). Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems. Oxidative medicine and cellular longevity, 2018, 5076271. https://doi.org/10.1155/2018/5076271
34. Kim, S., Han, D., Ryu, J., Kim, K., & Kim, Y. H. (2021). Effects of mobile phone usage on sperm quality - No time-dependent relationship on usage: A systematic review and updated meta-analysis. Environmental research, 202, 111784. https://doi.org/10.1016/j.envres.2021.111784
35. Hagras, A. M., Toraih, E. A., & Fawzy, M. S. (2016). Mobile phones electromagnetic radiation and NAD+-dependent isocitrate dehydrogenase as a mitochondrial marker in asthenozoospermia. Biochimie open, 3, 19–25. https://doi.org/10.1016/j.biopen.2016.07.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Michał Sienkiewicz, Bartosz Pawłowski, Magdalena Kłusek, Dorota Zatłoka-Mazur, Filip Klimas, Kacper Rusiński, Bartłomiej Sienkiewicz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 27
Number of citations: 0