Advances in Targeted Therapies and Combination Approaches for Melanoma: A Comprehensive Review
DOI:
https://doi.org/10.12775/QS.2024.23.54869Keywords
melanoma, targeted therapy, immunotherapyAbstract
Introduction and Purpose: Melanoma, an aggressive malignancy from melanocytes, has a poor prognosis. Despite advances in targeted therapies and immunotherapies, drug resistance remains a challenge. This review examines the molecular pathways involved in melanoma and therapeutic strategies targeting them, aiming to improve patient outcomes and overcome treatment resistance by understanding genetic alterations and signaling cascades driving melanoma progression.
State of Knowledge: Melanoma arises from genetic predisposition and UV radiation exposure, involving mutations in pathways like RAS/RAF/MAPK and PI3K/AKT. Targeted therapies, such as BRAF and MEK inhibitors, are effective, especially in BRAF-mutant patients. However, resistance mechanisms, including alternative pathway activation and immune evasion, limit their long-term success. Combination therapies with immunotherapies show promise in overcoming resistance. Emerging targets like NRAS, c-KIT, and c-MET offer new treatment possibilities. Ongoing challenges include identifying biomarkers for patient stratification and managing treatment-related toxicity.
Conclusions: Understanding the molecular mechanisms of melanoma is crucial for advancing therapies. Targeted therapies and combination approaches have improved outcomes, especially in advanced cases. However, challenges like treatment resistance and toxicity require ongoing research. By exploring signaling pathways and new targets, treatment efficacy and durability can be enhanced. Continued research and clinical trials are essential to translate these advancements into practice, improving survival rates and quality of life for melanoma patients.
References
Böni R, Schuster C, Nehrhoff B, Burg G. Epidemiology of skin cancer. Neuro Endocrinol Lett. 2002;23 Suppl 2:48-51.
Khan AQ, Travers JB, Kemp MG. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ Mol Mutagen. 2018;59(5):438-460. doi:10.1002/em.22176
Montor, W.R.; Salas, A.; Melo, F.H.M. Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: The current arsenal of inhibitors. Mol. Cancer 2018, 17, 55.
Schrank Z, Chhabra G, Lin L, et al. Current Molecular-Targeted Therapies in NSCLC and Their Mechanism of Resistance. Cancers (Basel). 2018;10(7):224. Published 2018 Jul 4. doi:10.3390/cancers10070224
Carr S, Smith C, Wernberg J. Epidemiology and Risk Factors of Melanoma. Surg Clin North Am. 2020;100(1):1-12. doi:10.1016/j.suc.2019.09.005
O'Neill CH, Scoggins CR. Melanoma. J Surg Oncol. 2019;120(5):873-881. doi:10.1002/jso.25604
Iglesias-Pena N, Paradela S, Tejera-Vaquerizo A, Boada A, Fonseca E. Cutaneous Melanoma in the Elderly: Review of a Growing Problem. Actas Dermo-Sifiliográficas. 2019;110(6):434-447. doi:10.1016/j.adengl.2019.05.012
Bevona C, Goggins W, Quinn T, Fullerton J, Tsao H. Cutaneous Melanomas Associated With Nevi. Archives of Dermatology. 2003;139(12):1620-1624. doi:10.1001/archderm.139.12.1620
Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biology & Therapy. 2019;20(11):1366-1379. doi:10.1080/15384047.2019.1640032
Michielin O, van Akkooi ACJ, Ascierto PA, Dummer R, Keilholz U; ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019;30(12):1884-1901. doi:10.1093/annonc/mdz411
Czarnecka AM, Bartnik E, Fiedorowicz M, Rutkowski P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int J Mol Sci. 2020;21(13):4576. Published 2020 Jun 27. doi:10.3390/ijms21134576
Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463-482. doi:10.1038/nrclinonc.2017.43
Namikawa K, Yamazaki N. Targeted Therapy and Immunotherapy for Melanoma in Japan. Curr Treat Options Oncol. 2019;20(1):7. Published 2019 Jan 24. doi:10.1007/s11864-019-0607-8
Smalley KSM. Understanding Melanoma Signaling Networks as the Basis for Molecular Targeted Therapy. Journal of Investigative Dermatology. 2010;130(1):28-37. doi:10.1038/jid.2009.177
Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. The Lancet. 2012;380(9839):358-365. doi:10.1016/S0140-6736(12)60868-X
Robert Caroline, Karaszewska Boguslawa, Schachter Jacob, et al. Improved Overall Survival in Melanoma with Combined Dabrafenib and Trametinib. New England Journal of Medicine. 2015;372(1):30-39. doi:10.1056/NEJMoa1412690
Subbiah V, Baik C, Kirkwood JM. Clinical Development of BRAF plus MEK Inhibitor Combinations. Trends in Cancer. 2020;6(9):797-810. doi:10.1016/j.trecan.2020.05.009
Yu C, Liu X, Yang J, et al. Combination of Immunotherapy With Targeted Therapy: Theory and Practice in Metastatic Melanoma. Front Immunol. 2019;10:990. Published 2019 May 7. doi:10.3389/fimmu.2019.00990
Sun J, Zager JS, Eroglu Z. Encorafenib/binimetinib for the treatment of BRAF-mutant advanced, unresectable, or metastatic melanoma: design, development, and potential place in therapy. Onco Targets Ther. 2018;11:9081-9089. Published 2018 Dec 14. doi:10.2147/OTT.S171693
Koelblinger P, Thuerigen O, Dummer R. Development of encorafenib for BRAF-mutated advanced melanoma. Curr Opin Oncol. 2018;30(2):125-133. doi:10.1097/CCO.0000000000000426
Sullivan R, LoRusso P, Boerner S, Dummer R. Achievements and Challenges of Molecular Targeted Therapy in Melanoma. Am Soc Clin Oncol Educ Book. 2015;(35):177-186. doi:10.14694/EdBook_AM.2015.35.177
Dummer R, Long GV, Robert C, et al. Randomized Phase III Trial Evaluating Spartalizumab Plus Dabrafenib and Trametinib for BRAF V600-Mutant Unresectable or Metastatic Melanoma. J Clin Oncol. 2022;40(13):1428-1438. doi:10.1200/JCO.21.01601
Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251-263. doi:10.1016/j.cell.2012.06.024
Devitt B, Liu W, Salemi R, et al. Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell Melanoma Res. 2011;24(4):666-672. doi:10.1111/j.1755-148X.2011.00873.x
Thomas NE, Edmiston SN, Alexander A, et al. Association Between NRAS and BRAF Mutational Status and Melanoma-Specific Survival Among Patients With Higher-Risk Primary Melanoma [published correction appears in JAMA Oncol. 2015 Jun;1(3):285]. JAMA Oncol. 2015;1(3):359-368. doi:10.1001/jamaoncol.2015.0493
Kelleher FC, McArthur GA. Targeting NRAS in melanoma. Cancer J. 2012;18(2):132-136. doi:10.1097/PPO.0b013e31824ba4df
Sosman JA, Kittaneh M, Lolkema MPJK, et al. A phase 1b/2 study of LEE011 in combination with binimetinib (MEK162) in patients with NRAS-mutant melanoma: Early encouraging clinical activity. JCO. 2014;32(15_suppl):9009-9009. doi:10.1200/jco.2014.32.15_suppl.9009
Atefi M, Titz B, Avramis E, et al. Combination of pan-RAF and MEK inhibitors in NRAS mutant melanoma. Mol Cancer. 2015;14(1):27. Published 2015 Feb 3. doi:10.1186/s12943-015-0293-5
Adam C, Fusi L, Weiss N, et al. Efficient Suppression of NRAS-Driven Melanoma by Co-Inhibition of ERK1/2 and ERK5 MAPK Pathways. J Invest Dermatol. 2020;140(12):2455-2465.e10. doi:10.1016/j.jid.2020.03.972
Hong David S., Fakih Marwan G., Strickler John H., et al. KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. New England Journal of Medicine. 2020;383(13):1207-1217. doi:10.1056/NEJMoa1917239
Vanni I, Tanda ET, Dalmasso B, et al. Non-BRAF Mutant Melanoma: Molecular Features and Therapeutical Implications. Front Mol Biosci. 2020;7:172. Published 2020 Jul 24. doi:10.3389/fmolb.2020.00172
Wan X, Liu R, Li Z. The Prognostic Value of HRAS mRNA Expression in Cutaneous Melanoma. Biomed Res Int. 2017;2017:5356737. doi:10.1155/2017/5356737
Portelinha A, Thompson S, Smith RA, et al. ASN007 is a selective ERK1/2 inhibitor with preferential activity against RAS-and RAF-mutant tumors. Cell Rep Med. 2021;2(7):100350. Published 2021 Jul 21. doi:10.1016/j.xcrm.2021.100350
Crosier PS, Ricciardi ST, Hall LR, Vitas MR, Clark SC, Crosier KE. Expression of isoforms of the human receptor tyrosine kinase c-kit in leukemic cell lines and acute myeloid leukemia. Blood. 1993;82(4):1151-1158.
Maulik G, Bharti A, Khan E, Broderick RJ, Kijima T, Salgia R. Modulation of c-Kit/SCF pathway leads to alterations in topoisomerase-I activity in small cell lung cancer. J Environ Pathol Toxicol Oncol. 2004;23(4):237-251. doi:10.1615/jenvpathtoxoncol.v23.i4.10
Crosier PS, Ricciardi ST, Hall LR, Vitas MR, Clark SC, Crosier KE. Expression of isoforms of the human receptor tyrosine kinase c-kit in leukemic cell lines and acute myeloid leukemia. Blood. 1993;82(4):1151-1158.
Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340-4346. doi:10.1200/JCO.2006.06.2984
Tuveson DA, Willis NA, Jacks T, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene. 2001;20(36):5054-5058. doi:10.1038/sj.onc.1204704
Wei X, Mao L, Chi Z, et al. Efficacy Evaluation of Imatinib for the Treatment of Melanoma: Evidence From a Retrospective Study. Oncol Res. 2019;27(4):495-501. doi:10.3727/096504018X15331163433914
Meng D, Carvajal RD. KIT as an Oncogenic Driver in Melanoma: An Update on Clinical Development. Am J Clin Dermatol. 2019;20(3):315-323. doi:10.1007/s40257-018-0414-1
Sierra JR, Tsao MS. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol. 2011;3(1 Suppl):S21-S35. doi:10.1177/1758834011422557
Peschard P, Park M. From Tpr-Met to Met, tumorigenesis and tubes. Oncogene. 2007;26(9):1276-1285. doi:10.1038/sj.onc.1210201
Knudsen BS, Vande Woude G. Showering c-MET-dependent cancers with drugs. Current Opinion in Genetics & Development. 2008;18(1):87-96. doi:10.1016/j.gde.2008.02.001
Puri N, Ahmed S, Janamanchi V, et al. c-Met Is a Potentially New Therapeutic Target for Treatment of Human Melanoma. Clinical Cancer Research. 2007;13(7):2246-2253. doi:10.1158/1078-0432.CCR-06-0776
Patel M, Eckburg A, Gantiwala S, Hart Z, Dein J, Lam K, Puri N. Resistance to Molecularly Targeted Therapies in Melanoma. Cancers. 2021; 13(5):1115. https://doi.org/10.3390/cancers13051115
Etnyre D, Stone AL, Fong JT, et al. Targeting c-Met in melanoma: mechanism of resistance and efficacy of novel combinatorial inhibitor therapy. Cancer Biol Ther. 2014;15(9):1129-1141. doi:10.4161/cbt.29451
Cheng H, Terai M, Kageyama K, et al. Paracrine Effect of NRG1 and HGF Drives Resistance to MEK Inhibitors in Metastatic Uveal Melanoma. Cancer Res. 2015;75(13):2737-2748. doi:10.1158/0008-5472.CAN-15-0370
Puri N, Ahmed S, Janamanchi V, et al. c-Met Is a Potentially New Therapeutic Target for Treatment of Human Melanoma. Clinical Cancer Research. 2007;13(7):2246-2253. doi:10.1158/1078-0432.CCR-06-0776
Ohara M, Saito K, Kageyama K, et al. Dual Targeting of CDK4/6 and cMET in Metastatic Uveal Melanoma. Cancers (Basel). 2021;13(5):1104. Published 2021 Mar 4. doi:10.3390/cancers13051104
Leonardi GC, Falzone L, Salemi R, et al. Cutaneous melanoma: From pathogenesis to therapy (Review). Int J Oncol. 2018;52(4):1071-1080. doi:10.3892/ijo.2018.4287
Schram AM, Gandhi L, Mita MM, et al. A phase Ib dose-escalation and expansion study of the oral MEK inhibitor pimasertib and PI3K/MTOR inhibitor voxtalisib in patients with advanced solid tumours. Br J Cancer. 2018;119(12):1471-1476. doi:10.1038/s41416-018-0322-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Magda Przestrzelska, Iga Ślesicka, Natalia Zozula, Zuzanna Tomczewska, Aleksandra Rykucka, Marcin Wąs, Aleksandra Latała, Justyna Kiełbasa, Agata Kowalczyk, Katarzyna Bil
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 66
Number of citations: 0