The role of vitamin D in multiple sclerosis and its mechanisms of action
DOI:
https://doi.org/10.12775/QS.2024.19.54188Keywords
vitamin D, multiple sclerosis, neuroprotection, neurodegenerationAbstract
Introduction and Purpose: Multiple sclerosis (MS) is a prevalent autoimmune disease affecting the central nervous system, particularly in young people. Characterized by neurodegenerative and demyelinating processes, MS is influenced by genetic and environmental factors. Research indicates that sufficient levels of vitamin D can reduce the risk of developing MS. Studies show that higher sun exposure and dietary vitamin D intake are associated with a lower incidence of MS. Moreover, vitamin D supplementation may benefit those already diagnosed by alleviating symptoms and improving their quality of life. This review explores the potential benefits of vitamin D and its neuroprotective mechanisms in MS.
State of Knowledge: MS research and treatments have focused on immunomodulation, with less emphasis on neuroprotection, including the role of vitamin D. It is well-established that vitamin D has anti-inflammatory effects on the immune system in MS. It influences the proliferation and differentiation of neural stem cells and oligodendrocytes, enhances neurotrophin expression, reduces reactive astrogliosis, decreases oxidative stress, and stabilizes the blood-brain barrier. Research suggests that adequate vitamin D levels and supplementation might improve MS outcomes.
Conclusion: New diagnostic tools and therapeutic strategies are urgently needed to address the complex nature of MS, which includes inflammation, neuronal death, demyelination, and oxidative stress. Promoting vitamin D sufficiency and supplementation, alongside developing new neuroprotective agents, remains a valuable approach in combating MS. Understanding the mechanisms of MS and the effects of vitamin D could lead to better management strategies and enhanced quality of life for patients.
References
Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221-1231. doi:10.1016/s0140-6736(02)08220-x
Wang W, Li Y, Meng X. Vitamin D and neurodegenerative diseases. Heliyon. 2023:e12877. doi:10.1016/j.heliyon.2023.e12877
Koduah P, Paul F, Dörr JM. Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA J. 2017;8(4):313-325. Published 2017 Nov 15. doi:10.1007/s13167-017-0120-8
Lassmann H, Brück W, Lucchinetti CF. The Immunopathology of Multiple Sclerosis: An Overview. Brain Pathol. 2007;17(2):210-218. doi:10.1111/j.1750-3639.2007.00064.x
Kamińska J, Koper O, Piechal K, Kemona H. Multiple sclerosis - etiology and diagnostic potential. Advances in Hygiene and Experimental Medicine. (2017);71(null):551-563. doi:10.5604/01.3001.0010.3836. Polish.
Rodzajewska A, Kuryło W. The efficacy of vitamin D in multiple sclerosis: a review. J Educ Health Sport. 2023;32(1):156-171. doi:10.12775/jehs.2023.32.01.012. Polish.
Institute of Medicine (US) Committee on Multiple Sclerosis: Current Status and Strategies for the Future. Multiple Sclerosis: Current Status and Strategies for the Future. (Joy JE, Johnston RB, eds.). National Academies Press (US); 2001. Accessed May 2, 2024. http://www.ncbi.nlm.nih.gov/books/NBK222399/
Doshi A, Chataway J. Multiple sclerosis, a treatable disease. Clin Med. 2016;16(Suppl 6):s53-s59. doi:10.7861/clinmedicine.16-6-s53
Baskaran AB, Grebenciucova E, Shoemaker T, Graham EL. Current Updates on the Diagnosis and Management of Multiple Sclerosis for the General Neurologist. J Clin Neurol. 2023;19(3):217-229. doi:10.3988/jcn.2022.0208
Ntranos A, Lublin F. Diagnostic Criteria, Classification and Treatment Goals in Multiple Sclerosis: The Chronicles of Time and Space. Curr Neurol Neurosci Rep. 2016;16(10). doi:10.1007/s11910-016-0688-8
Pitt D, Lo CH, Gauthier SA i in. Toward Precision Phenotyping of Multiple Sclerosis. Neurol Neuroimmunol Neuroinflammation. 2022;9(6):e200025. doi:10.1212/nxi.0000000000200025
Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. New Engl J Med. 2018;378(2):169-180. doi:10.1056/nejmra1401483
Coveñas R, Marcos P, Mangas A. Editorial: New drugs, approaches and strategies for multiple sclerosis treatment. Front Neurosci. 2024;18. doi:10.3389/fnins.2024.1372140
Apostolopoulos V, Matsoukas J. Advances in Multiple Sclerosis Research–Series I. Brain Sci. 2020;10(11):795. doi:10.3390/brainsci10110795
Yang JH, Rempe T, Whitmire N, Dunn-Pirio A, Graves JS. Therapeutic Advances in Multiple Sclerosis. Front Neurol. 2022;13. doi:10.3389/fneur.2022.824926
Landry RL, Embers ME. The Probable Infectious Origin of Multiple Sclerosis. NeuroSci. 2023;4(3):211-234. doi:10.3390/neurosci4030019
Waubant E, Lucas R, Mowry E i in. Environmental and genetic risk factors for MS: an integrated review. Ann Clin Transl Neurol. 2019;6(9):1905-1922. doi:10.1002/acn3.50862
Cotsapas C, Mitrovic M. Genome-wide association studies of multiple sclerosis. Clin Amp Transl Immunol. 2018;7(6):e1018. doi:10.1002/cti2.1018
Galarza-Muñoz G, Briggs FB, Evsyukova I i in. Human Epistatic Interaction Controls IL7R Splicing and Increases Multiple Sclerosis Risk. Cell. 2017;169(1):72-84.e13. doi:10.1016/j.cell.2017.03.007
Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: An update. Mult Scler Relat Disord. 2017;14:35-45. doi:10.1016/j.msard.2017.03.014
Putscher E, Hecker M, Fitzner B i in. Genetic risk variants for multiple sclerosis are linked to differences in alternative pre-mRNA splicing. Front Immunol. 2022;13. doi:10.3389/fimmu.2022.931831
Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391(10130):1622-1636. doi:10.1016/s0140-6736(18)30481-1
Sintzel MB, Rametta M, Reder AT. Vitamin D and Multiple Sclerosis: A Comprehensive Review. Neurol Ther. 2017;7(1):59-85. doi:10.1007/s40120-017-0086-4
Kingwell E, Marriott JJ, Jetté N i in. Incidence and prevalence of multiple sclerosis in Europe: a systematic review. BMC Neurol. 2013;13(1). doi:10.1186/1471-2377-13-128
Simpson S, Blizzard L, Otahal P, Van der Mei I, Taylor B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Amp Psychiatry. 2011;82(10):1132-1141. doi:10.1136/jnnp.2011.240432
Mokry LE, Ross S, Ahmad OS i in. Vitamin D and Risk of Multiple Sclerosis: A Mendelian Randomization Study. PLOS Med. 2015;12(8):e1001866. doi:10.1371/journal.pmed.1001866
Nishanth K, Tariq E, Nzvere FP, Miqdad M, Cancarevic I. Role of Smoking in the Pathogenesis of Multiple Sclerosis: A Review Article. Cureus. 2020;12(8):e9564. Published 2020 Aug 5. doi:10.7759/cureus.9564
Stoiloudis P, Kesidou E, Bakirtzis C i in. The Role of Diet and Interventions on Multiple Sclerosis: A Review. Nutrients. 2022;14(6):1150. doi:10.3390/nu14061150
Gandhi F, Jhaveri S, Avanthika C, et al. Impact of Vitamin D Supplementation on Multiple Sclerosis. Cureus. 2021;13(10):e18487. Published 2021 Oct 5. doi:10.7759/cureus.18487
Ismail II, Saqr M. A Quantitative Synthesis of Eight Decades of Global Multiple Sclerosis Research Using Bibliometrics. Front Neurol. 2022;13. doi:10.3389/fneur.2022.845539
Neate SL, Donald A, Jelinek GA, Nag N. Experiences of and attitudes to lifestyle modification for the management of multiple sclerosis: A qualitative analysis of free-text survey data. Health Expect. 2022;25(1):214-222. doi:10.1111/hex.13364
Sorrenti V, Buriani A, Davinelli S, Scapagnini G, Fortinguerra S. Vitamin D Physiology, Deficiency, Genetic Influence, and the Effects of Daily vs. Bolus Doses of Vitamin D on Overall Health: A Clinical Approach. Nutraceuticals. 2023;3(3):403-420. doi:10.3390/nutraceuticals3030030
Maurya VK, Aggarwal M. Factors influencing the absorption of vitamin D in GIT: an overview. J Food Sci Technol. 2017;54(12):3753-3765. doi:10.1007/s13197-017-2840-0
Mendes MM, Hart KH, Botelho PB, Lanham-New SA. Vitamin D status in the tropics: Is sunlight exposure the main determinant? Nutr Bull. 2018;43(4):428-434. doi:10.1111/nbu.12349
Dawson-Hughes B, Harris SS, Lichtenstein AH, Dolnikowski G, Palermo NJ, Rasmussen H. Dietary Fat Increases Vitamin D-3 Absorption. J Acad Nutr Diet. 2015;115(2):225-230. doi:10.1016/j.jand.2014.09.014
Voltan G, Cannito M, Ferrarese M, Ceccato F, Camozzi V. Vitamin D: An Overview of Gene Regulation, Ranging from Metabolism to Genomic Effects. Genes. 2023;14(9):1691. doi:10.3390/genes14091691
Rebelos E, Tentolouris N, Jude E. The Role of Vitamin D in Health and Disease: A Narrative Review on the Mechanisms Linking Vitamin D with Disease and the Effects of Supplementation. Drugs. 2023;83:665-685. doi:10.1007/s40265-023-01875-8
Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88(2):582S—586S. doi:10.1093/ajcn/88.2.582s
Tanaka Y, DeLuca HF. Stimulation of 1,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3 in the hypocalcaemic rat. Biochem J. 1983;214(3):893-897. doi:10.1042/bj2140893
Saponaro F, Saba A, Zucchi R. An Update on Vitamin D Metabolism. Int J Mol Sci. 2020;21(18):6573. doi:10.3390/ijms21186573
Bikle DD, Patzek S, Wang Y. Physiologic and pathophysiologic roles of extra renal CYP27b1: Case report and review. Bone Rep. 2018;8:255-267. doi:10.1016/j.bonr.2018.02.004
Beard JA, Bearden A, Striker R. Vitamin D and the anti-viral state. J Clin Virol. 2011;50(3):194-200. doi:10.1016/j.jcv.2010.12.006
Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc National Acad Sci. 2004;101(20):7711-7715. doi:10.1073/pnas.0402490101
Prietl B, Treiber G, Pieber T, Amrein K. Vitamin D and Immune Function. Nutrients. 2013;5(7):2502-2521. doi:10.3390/nu5072502
Miclea A, Bagnoud M, Chan A, Hoepner R. A Brief Review of the Effects of Vitamin D on Multiple Sclerosis. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.00781
Molnár F, Peräkylä M, Carlberg C. Vitamin D Receptor Agonists Specifically Modulate the Volume of the Ligand-binding Pocket. J Biol Chem. 2006;281(15):10516-10526. doi:10.1074/jbc.m513609200
Colotta F, Jansson B, Bonelli F. Modulation of inflammatory and immune responses by vitamin D. J Autoimmun. 2017;85:78-97. doi:10.1016/j.jaut.2017.07.007
Sangha A, Quon M, Pfeffer G, Orton SM. The Role of Vitamin D in Neuroprotection in Multiple Sclerosis: An Update. Nutrients. 2023;15(13):2978. doi:10.3390/nu15132978
Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the Vitamin D receptor and 1α-hydroxylase in human brain. J Chem Neuroanat. 2005;29(1):21-30. doi:10.1016/j.jchemneu.2004.08.006
Huang JK, Jarjour AA, Nait Oumesmar B i in. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci. 2010;14(1):45-53. doi:10.1038/nn.2702
de la Fuente AG, Errea O, van Wijngaarden P i in. Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. J Cell Biol. 2015;211(5):975-985. doi:10.1083/jcb.201505119
Gomez-Pinedo U, Cuevas JA, Benito-Martín MS, et al. Vitamin D increases remyelination by promoting oligodendrocyte lineage differentiation. Brain Behav. 2020;10(1):e01498. doi:10.1002/brb3.1498
Zou Y, Mu M, Zhang S i in. Vitamin D3 suppresses astrocyte activation and ameliorates coal dust-induced mood disorders in mice. J Affect Disord. 2022;303:138-147. doi:10.1016/j.jad.2022.02.026
Chiareli RA, Carvalho GA, Marques BL, et al. The Role of Astrocytes in the Neurorepair Process. Front Cell Dev Biol. 2021;9. doi:10.3389/fcell.2021.665795
Correale J, Farez MF. The Role of Astrocytes in Multiple Sclerosis Progression. Front Neurol. 2015;6. doi:10.3389/fneur.2015.00180
Yan YQ, Ma CG, Ding ZB, Song LJ, Wang Q, Kumar G. Astrocytes: a double-edged sword in neurodegenerative diseases. Neural Regen Res. 2021;16(9):1702. doi:10.4103/1673-5374.306064
Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain. 2017;140(7):1900-1913. doi:10.1093/brain/awx113
O’Loughlin E, Madore C, Lassmann H, Butovsky O. Microglial Phenotypes and Functions in Multiple Sclerosis. Cold Spring Harb Perspect Med. 2018;8(2):a028993. doi:10.1101/cshperspect.a028993
Galoppin M, Kari S, Soldati S, et al. Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Commun. 2022;4(4):fcac171. Published 2022 Jun 30. doi:10.1093/braincomms/fcac171
Cantorna MT, Woodward WD, Hayes CE, DeLuca HF. 1,25-dihydroxyvitamin D3 is a positive regulator for the two anti-encephalitogenic cytokines TGF-beta 1 and IL-4. J Immunol. 1998;160(11):5314-5319.
Ohl K, Tenbrock K, Kipp M. Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp Neurol. 2016;277:58-67. doi:10.1016/j.expneurol.2015.11.010
de Oliveira LR, Mimura LA, Fraga-Silva TF, et al. Calcitriol Prevents Neuroinflammation and Reduces Blood-Brain Barrier Disruption and Local Macrophage/Microglia Activation. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.00161
Haider L, Fischer MT, Frischer JM, et al. Oxidative damage in multiple sclerosis lesions. Brain. 2011;134(7):1914-1924. doi:10.1093/brain/awr128
Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9(1):23. doi:10.1186/2045-8118-9-23
Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett. 2011;585(23):3770-3780. doi:10.1016/j.febslet.2011.04.066
Elahy M, Jackaman C, Mamo J, et al. Blood–brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Amp Ageing. 2015;12(1):2. doi:10.1186/s12979-015-0029-9
Lutz SE, Smith JR, Kim DH, et al. Caveolin1 Is Required for Th1 Cell Infiltration, but Not Tight Junction Remodeling, at the Blood-Brain Barrier in Autoimmune Neuroinflammation. Cell Rep. 2017;21(8):2104-2117. doi:10.1016/j.celrep.2017.10.094
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Agata Kowalczyk, Justyna Kiełbasa , Magda Przestrzelska, Aleksandra Rykucka, Marcin Wąs, Natalia Zozula, Zuzanna Tomczewska, Katarzyna Bil, Iga Ślesicka, Aleksandra Latała

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 119
Number of citations: 0