The role of nintedanib and pirfenidone in the treatment of idiopathic pulmonary fibrosis and review of recent clinical trials of IPF therapy
DOI:
https://doi.org/10.12775/QS.2024.20.51395Keywords
idiopathic pulmonary fibrosis, nintedanib, pirfenidone, treatment, IPF pathogenesisAbstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, rare disease characterized by continuous fibrosis of the lung parenchyma. It mainly affects the elderly; however, it is increasingly being diagnosed in younger patients as well. Risk factors include smoking, occupational dust exposure and genetic factors. Symptoms of IPF include shortness of breath, dry cough and reduced exercise tolerance, leading to a reduced quality of life for patients. Diagnosis is based on imaging, mainly high-resolution CT scans, and the exclusion of other causes of interstitial lung disease. Two antifibrotic drugs, nintedanib and pirfenidone, are now approved to slow disease progression. Nintedanib acts as a tyrosine kinase inhibitor, blocking the signaling pathways of lung fibroblasts. Pirfenidone, on the other hand, has anti-inflammatory and anti-fibrotic effects by inhibiting TGF-b signaling pathways. Clinical trials have confirmed their efficacy in reducing the decline in increased vital capacity and the risk of disease progression. In Poland, patients with IPF can benefit from nintedanib and pirfenidone therapy under the drug program. Despite advances in treatment, more research is needed on new IPF therapies. Clinical trials of zinpentraxin, ziritaxestat and pambrevalumab have not confirmed their efficacy in treating IPF. Results from initial studies of bexotegrast show promise, but further studies are needed and are ongoing. Despite advances in the treatment of IPF, further research into new therapies is needed to improve therapeutic outcomes and patient quality of life.
References
Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos T, Maher TM, Tzouvelekis A, Ryerson CJ. Idiopathic Pulmonary Fibrosis: Disease Mechanisms and Drug Development. Pharmacol Ther. 2021;222:107798. doi:10.1016/j.pharmthera.2020.107798
Maher TM, Bendstrup E, Dron L, Langley J, Smith G, Khalid JM, Patel H, Kreuter M. Global Incidence and Prevalence of Idiopathic Pulmonary Fibrosis. Respir Res. 2021;22(1). doi:10.1186/s12931-021-01791-z
Checa M, Ruiz V, Montaño M, Velázquez-Cruz R, Selman M, Pardo A. MMP-1 Polymorphisms and the Risk of Idiopathic Pulmonary Fibrosis. Hum Genet. 2008;124(5):465-472. doi:10.1007/s00439-008-0571-z
Piotrowski W, Iwona B, Adam B. Wytyczne Polskiego Towarzystwa Chorób Płuc dotyczące diagnostyki i leczenia idiopatycznego włóknienia płuc. Pneumonol Polska. 2020;(1):9-67.
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB. Idiopathic Pulmonary Fibrosis: Current and Future Treatment. Clin Respir J. 2022;16(2):84-96. doi:10.1111/crj.13466
Spagnolo P, Cottin V. Genetics of Idiopathic Pulmonary Fibrosis: From Mechanistic Pathways to Personalised Medicine. J Med Genet. 2016;54(2):93-99. doi:10.1136/jmedgenet-2016-103973
Bonella F, Spagnolo P, Ryerson C. Current and Future Treatment Landscape for Idiopathic Pulmonary Fibrosis. Drugs. 2023. doi:10.1007/s40265-023-01950-0
Fernandez IE, Eickelberg O. The Impact of TGF-β on Lung Fibrosis. Proc Am Thorac Soc. 2012;9(3):111-116. doi:10.1513/pats.201203-023aw
Stępień-Wyrobiec O, Hrycek A, Wyrobiec G. Transformujący czynnik wzrostu beta (TGF-beta) – budowa, mechanizmy oddziaływania oraz jego rola w patogenezie tocznia rumieniowatego układowego. Postepy Hig I Med Doswiadczalnej. 2008;(62):688-693.
Hamanaka RB, Mutlu GM. Metabolic Requirements of Pulmonary Fibrosis: Role of Fibroblast Metabolism. FEBS J. 2021. doi:10.1111/febs.15693
Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, Kreuter M, Lynch DA, Maher TM, Martinez FJ, et al. Idiopathic Pulmonary Fibrosis (An Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2022;205(9):e18-e47. doi:10.1164/rccm.202202-0399st
Sgalla G, Biffi A, Richeldi L. Idiopathic Pulmonary Fibrosis: Diagnosis, Epidemiology and Natural History. Respirology. 2015;21(3):427-437. doi:10.1111/resp.12683
Gross TJ, Hunninghake GW. Idiopathic Pulmonary Fibrosis. New Engl J Med. 2001;345(7):517-525. doi:10.1056/nejmra003200
Piciucchi S, Tomassetti S, Ravaglia C, Gurioli C, Gurioli C, Dubini A, Carloni A, Chilosi M, Colby TV, Poletti V. From “Traction Bronchiectasis” to Honeycombing in Idiopathic Pulmonary Fibrosis: A Spectrum of Bronchiolar Remodeling Also in Radiology? BMC Pulm Med. 2016;16(1). doi:10.1186/s12890-016-0245-x
Cavazza A, Rossi G, Carbonelli C, Spaggiari L, Paci M, Roggeri A. The Role of Histology in Idiopathic Pulmonary Fibrosis: An Update. Respir Med. 2010;104(S11—S22). doi:10.1016/j.rmed.2010.03.013
Jones MG, Fabre A, Schneider P, Cinetto F, Sgalla G, Mavrogordato M, Jogai S, Alzetani A, Marshall BG, O’Reilly KM, et al. Three-Dimensional Characterization of Fibroblast Foci in Idiopathic Pulmonary Fibrosis. JCI Insight. 2016;1(5). doi:10.1172/jci.insight.86375
Raghu G, Anstrom K, Lasky J. Prednisone, Azathioprine, and N-Acetylcysteine for Pulmonary Fibrosis. New Engl J Med. 2012;366(21):1968-1977. doi:10.1056/nejmoa1113354
Munchel J, Shea B. Diagnosis and Management of Idiopathic Pulmonary Fibrosis. RI Med J. 2021;104(7):26-29.
Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, Cottin V, Flaherty KR, Hansell DM, Inoue Y, et al. Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. New Engl J Med. 2014;370(22):2071-2082. doi:10.1056/nejmoa1402584
Summary of Product Characteristics - Ofev. European Commission. Available online: https://ec.europa.eu/health/documents/community-register/2018/20180726141683/anx_141683_pl.pdf (accessed on 29.03.2024).
Summary of Product Characteristics - Esbriet. European Commission. Available online: https://ec.europa.eu/health/documents/community-register/2014/20140627129051/anx_129051_pl.pdf (accessed on 29.03.2024).
Wright WA, Crowley LE, Parekh D, Crawshaw A, Dosanjh DP, Nightingale P, Thickett DR. Real-World Retrospective Observational Study Exploring the Effectiveness and Safety of Antifibrotics in Idiopathic Pulmonary Fibrosis. BMJ Open Respir Res. 2021;8(1):e000782. doi:10.1136/bmjresp-2020-000782
Somogyi V, Chaudhuri N, Torrisi SE, Kahn N, Müller V, Kreuter M. The Therapy of Idiopathic Pulmonary Fibrosis: What Is Next? Eur Respir Rev. 2019;28(153):190021. doi:10.1183/16000617.0021-2019
Bag R, Kiyan E. Lung Transplantation in Idiopathic Pulmonary Fibrosis. Guncel Gogus Hastalık Serisi. 2020;5(2):72-92. doi:10.5152/gghs.2017.0022
Laporta Hernandez R, Aguilar Perez M, Lázaro Carrasco M, Ussetti Gil P. Lung Transplantation in Idiopathic Pulmonary Fibrosis. Med Sci. 2018;6(3):68. doi:10.3390/medsci6030068
Hilberg F, Roth GJ, Krssak M, Kautschitsch S, Sommergruber W, Tontsch-Grunt U, Garin-Chesa P, Bader G, Zoephel A, Quant J, et al. BIBF 1120: Triple Angiokinase Inhibitor With Sustained Receptor Blockade and Good Antitumor Efficacy. Cancer Res. 2008;68(12):4774-4782. doi:10.1158/0008-5472.can-07-6307
Hostettler KE, Zhong J, Papakonstantinou E, Karakiulakis G, Tamm M, Seidel P, Sun Q, Mandal J, Lardinois D, Lambers C, et al. Anti-Fibrotic Effects of Nintedanib in Lung Fibroblasts Derived From Patients With Idiopathic Pulmonary Fibrosis. Respir Res. 2014;15(1). doi:10.1186/s12931-014-0157-3
Wollin L, Maillet I, Quesniaux V, Holweg A, Ryffel B. Antifibrotic and Anti-Inflammatory Activity of the Tyrosine Kinase Inhibitor Nintedanib in Experimental Models of Lung Fibrosis. J Pharmacol Exp Ther. 2014;349(2):209-220. doi:10.1124/jpet.113.208223
Lancaster LH, de Andrade JA, Zibrak JD, Padilla ML, Albera C, Nathan SD, Wijsenbeek MS, Stauffer JL, Kirchgaessler K-U, Costabel U. Pirfenidone Safety and Adverse Event Management in Idiopathic Pulmonary Fibrosis. Eur Respir Rev. 2017;26(146):170057. doi:10.1183/16000617.0057-2017
Conte E, Gili E, Fagone E, Fruciano M, Iemmolo M, Vancheri C. Effect of pirfenidone on proliferation, TGF-β-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci. 2014;58:13-19. doi:10.1016/j.ejps.2014.02.014
Shakeel I, Afzal M, Islam A, Sohal SS, Hassan MI. Idiopathic Pulmonary Fibrosis: Pathophysiology, Cellular Signaling, Diagnostic and Therapeutic Approaches. Med Drug Discov. 2023;100167. doi:10.1016/j.medidd.2023.100167
Inomata M, Kamio K, Azuma A, Matsuda K, Kokuho N, Miura Y, Hayashi H, Nei T, Fujita K, Saito Y, et al. Pirfenidone Inhibits Fibrocyte Accumulation in the Lungs in Bleomycin-Induced Murine Pulmonary Fibrosis. Respir Res. 2014;15(1):16. doi:10.1186/1465-9921-15-16
King Jr TE, Bradford WZ, Fagan EA. A Phase 3 Trial of Pirfenidone in Patients With Idiopathic Pulmonary Fibrosis. New Engl J Med. 2014;371(12):1172. doi:10.1056/nejmx140048
Medicinal Product Program B.87. Portal gov.pl. Available online: https://www.gov.pl/attachment/2bde78b8-c0d8-4b39-bb99-18d42df62185 (accessed on 29.03.2024).
Raghu G, van den Blink B, Hamblin MJ, Brown AW, Golden JA, Ho LA, Wijsenbeek MS, Vasakova M, Pesci A, Antin-Ozerkis DE, et al. Long-Term Treatment With Recombinant Human Pentraxin 2 Protein in Patients With Idiopathic Pulmonary Fibrosis: An Open-Label Extension Study. Lancet Respir Med. 2019;7(8):657-664. doi:10.1016/s2213-2600(19)30172-9
Maher TM, van der Aar EM, Van de Steen O, Allamassey L, Desrivot J, Dupont S, Fagard L, Ford P, Fieuw A, Wuyts W. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of GLPG1690, a Novel Autotaxin Inhibitor, to Treat Idiopathic Pulmonary Fibrosis (FLORA): A Phase 2a Randomised Placebo-Controlled Trial. Lancet Respir Med. 2018;6(8):627-635. doi:10.1016/s2213-2600(18)30181-4
Richeldi L, Fernández Pérez ER, Costabel U, Albera C, Lederer DJ, Flaherty KR, Ettinger N, Perez R, Scholand MB, Goldin J, et al. Pamrevlumab, an Anti-Connective Tissue Growth Factor Therapy, for Idiopathic Pulmonary Fibrosis (PRAISE): A Phase 2, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Respir Med. 2020;8(1):25-33. doi:10.1016/s2213-2600(19)30262-0
Fibrogen Company. Available online: https://investor.fibrogen.com/news-releases/news-release-details/fibrogen-announces-topline-results-phase-3-zephyrus-1-study (accessed 29.03.2024).
Decaris ML, Schaub JR, Chen C, Cha J, Lee GG, Rexhepaj M, Ho SS, Rao V, Marlow MM, Kotak P, et al. Dual inhibition of αvβ6 and αvβ1 reduces fibrogenesis in lung tissue explants from patients with IPF. Respir Res. 2021;22(1). doi:10.1186/s12931-021-01863-0
Mullard A. Pliant’s Integrin Inhibitor Boosted by Phase II IPF Data. Nat Rev Drug Discov. 2022. doi:10.1038/d41573-022-00135-w
Pliant Therapeutics Announces Initiation of BEACON-IPF, a Phase 2b Clinical Trial of Bexotegrast in Idiopathic Pulmonary Fibrosis. Pliant Company. Available online: https://ir.pliantrx.com/news-releases/news-release-details/pliant-therapeutics-announces-initiation-beacon-ipf-phase-2b/ (accessed 2.04.2024).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Michał Żuber, Paulina Dąbrowska, Michał Dacka
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 152
Number of citations: 0