Stem Cell Therapies for Spinal Cord Injury - A Review
DOI:
https://doi.org/10.12775/QS.2024.15.52258Keywords
Stem Cells, Spinal Cord Injury, SCI, Regenerative Medicine, Neural Stem Cells, NSCs, Embryonic Stem Cells, ESCs, Induced Pluripotent Stem Cells, IPSCs, Mesenchymal Stem Cells, MSCsAbstract
The escalating incidence of Spinal Cord Injury (SCI), with approximately 0.9 million cases globally, underscores its growing public health concern. Traumatic SCI, often prevalent in developing nations due to factors like motor vehicle accidents and falls, leads to secondary damage involving inflammation, neuronal death, and ionic dysregulation. Despite the absence of an effective treatment for SCI, Stem Cell Therapy (SCT) emerges as a promising avenue, harnessing stem cells' unique capabilities for regeneration and replacement. The review explores various stem cell types, such as Neural Stem/Progenitor Cells (NS/PCs), Embryonic Stem Cells (ESCs), Induced Pluripotent Stem Cells (iPSCs), and Mesenchymal Stem Cells (MSCs), detailing their potential in preclinical and clinical contexts. Specifically, NSCs exhibit therapeutic promise by modulating astrocyte contribution, enhancing differentiation, and promoting growth factors. ESCs, despite their pluripotency, face ethical concerns and potential teratocarcinoma formation. IPSCs, reprogrammed from somatic cells, showcase potential in treating SCI without ethical issues. MSCs, with diverse sources like bone marrow, umbilical cord, and adipose tissue, offer versatility in differentiation and therapeutic benefits. Clinical trials with MSCs, especially BM-MSCs, UC-MSCs, and AD-MSCs, demonstrate improvements in motor and sensory functions, highlighting their regenerative potential. Despite promising results, challenges such as potential tumorigenesis and high costs persist, warranting further exploration and clinical translation of these stem cell therapies for SCI.
References
Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309-331. Published 2014 Sep 23. doi:10.2147/CLEP.S68889
Ding W, Hu S, Wang P, et al. Spinal Cord Injury: The Global Incidence, Prevalence, and Disability From the Global Burden of Disease Study 2019. Spine (Phila Pa 1976). 2022;47(21):1532-1540. doi:10.1097/BRS.0000000000004417
Golestani A, Shobeiri P, Sadeghi-Naini M, et al. Epidemiology of Traumatic Spinal Cord Injury in Developing Countries from 2009 to 2020: A Systematic Review and Meta-Analysis. Neuroepidemiology. 2022;56(4):219-239. doi:10.1159/000524867
Litak J, Czyżewski W, Szymoniuk M, et al. Biological and Clinical Aspects of Metastatic Spinal Tumors. Cancers (Basel). 2022;14(19):4599. Published 2022 Sep 22. doi:10.3390/cancers14194599
Smith É, Fitzpatrick P, Lyons F, Morris S, Synnott K. Epidemiology of non-traumatic spinal cord injury in Ireland - a prospective population-based study. J Spinal Cord Med. 2022;45(1):76-81. doi:10.1080/10790268.2020.1762829
Gober J, Thomas SP, Gater DR. Pediatric Spina Bifida and Spinal Cord Injury. J Pers Med. 2022;12(6):985. Published 2022 Jun 17. doi:10.3390/jpm12060985
Patek M, Stewart M. Spinal cord injury. Anaesthesia & Intensive Care Medicine. 2023;24(7). doi:https://doi.org/10.1016/j.mpaic.2023.04.006
Wilson JR, Tetreault LA, Kwon BK, et al. Timing of Decompression in Patients With Acute Spinal Cord Injury: A Systematic Review. Global Spine J. 2017;7(3 Suppl):95S-115S. doi:10.1177/2192568217701716
Fehlings MG, Perrin RG. The role and timing of early decompression for cervical spinal cord injury: update with a review of recent clinical evidence. Injury. 2005;36 Suppl 2:B13-B26. doi:10.1016/j.injury.2005.06.011
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7(1):272. Published 2022 Aug 6. doi:10.1038/s41392-022-01134-4
Shende P, Subedi M. Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury. Biomed Pharmacother. 2017;91:693-706. doi:10.1016/j.biopha.2017.04.126
Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687-702. doi:10.1016/j.neuron.2011.05.001
Grégoire CA, Goldenstein BL, Floriddia EM, Barnabé-Heider F, Fernandes KJ. Endogenous neural stem cell responses to stroke and spinal cord injury. Glia. 2015;63(8):1469-1482. doi:10.1002/glia.22851
Emgård M, Piao J, Aineskog H, et al. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord. Exp Neurol. 2014;253:138-145. doi:10.1016/j.expneurol.2013.12.022
Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 2012;21(12):2222-2238. doi:10.1089/scd.2011.0596
Kadoya K, Lu P, Nguyen K, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med. 2016;22(5):479-487. doi:10.1038/nm.4066
Armstrong RJ, Hurelbrink CB, Tyers P, et al. The potential for circuit reconstruction by expanded neural precursor cells explored through porcine xenografts in a rat model of Parkinson's disease. Exp Neurol. 2002;175(1):98-111. doi:10.1006/exnr.2002.7889
Kerr CL, Letzen BS, Hill CM, et al. Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury. Int J Neurosci. 2010;120(4):305-313. doi:10.3109/00207450903585290
Hofstetter CP, Holmström NA, Lilja JA, et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci. 2005;8(3):346-353. doi:10.1038/nn1405
Stenudd M, Sabelström H, Frisén J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol. 2015;72(2):235-237. doi:10.1001/jamaneurol.2014.2927
Giusto E, Donegà M, Cossetti C, Pluchino S. Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials. Exp Neurol. 2014;260:19-32. doi:10.1016/j.expneurol.2013.03.009
Shin S, Mitalipova M, Noggle S, et al. Long-term proliferation of human embryonic stem cell-derived neuroepithelial cells using defined adherent culture conditions. Stem Cells. 2006;24(1):125-138. doi:10.1634/stemcells.2004-0150
Shroff G, Dhanda Titus J, Shroff R. A review of the emerging potential therapy for neurological disorders: human embryonic stem cell therapy. Am J Stem Cells. 2017;6(1):1-12. Published 2017 Apr 15.
Harper JM, Krishnan C, Darman JS, et al. Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci U S A. 2004;101(18):7123-7128. doi:10.1073/pnas.0401103101
Yang JR, Liao CH, Pang CY, et al. Transplantation of porcine embryonic stem cells and their derived neuronal progenitors in a spinal cord injury rat model [published correction appears in Cytotherapy. 2013 May;15(5):627]. Cytotherapy. 2013;15(2):201-208. doi:10.1016/j.jcyt.2012.09.001
Iwai H, Shimada H, Nishimura S, et al. Allogeneic Neural Stem/Progenitor Cells Derived From Embryonic Stem Cells Promote Functional Recovery After Transplantation Into Injured Spinal Cord of Nonhuman Primates. Stem Cells Transl Med. 2015;4(7):708-719. doi:10.5966/sctm.2014-0215
Scott CT, Magnus D. Wrongful termination: lessons from the Geron clinical trial. Stem Cells Transl Med. 2014;3(12):1398-1401. doi:10.5966/sctm.2014-0147
Shroff G. Human Embryonic Stem Cell Therapy in Chronic Spinal Cord Injury: A Retrospective Study. Clin Transl Sci. 2016;9(3):168-175. doi:10.1111/cts.12394
Shroff G, Dhanda Titus J, Shroff R. A review of the emerging potential therapy for neurological disorders: human embryonic stem cell therapy. Am J Stem Cells. 2017;6(1):1-12. Published 2017 Apr 15.
Närvä E, Autio R, Rahkonen N, et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol. 2010;28(4):371-377. doi:10.1038/nbt.1615
Verfaillie CM, Pera MF, Lansdorp PM. Stem cells: hype and reality. Hematology Am Soc Hematol Educ Program. 2002;369-391. doi:10.1182/asheducation-2002.1.369
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. doi:10.1016/j.cell.2006.07.024
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917-1920. doi:10.1126/science.1151526
Goulão M, Lepore AC. iPS cell transplantation for traumatic spinal cord injury. Curr Stem Cell Res Ther. 2016;11(4):321-328. doi:10.2174/1574888x10666150723150059
Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, et al. Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis. Neuroscience. 2016;322:377-397. doi:10.1016/j.neuroscience.2016.02.034
All AH, Gharibani P, Gupta S, et al. Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors. PLoS One. 2015;10(1):e0116933. Published 2015 Jan 30. doi:10.1371/journal.pone.0116933
Kawabata S, Takano M, Numasawa-Kuroiwa Y, et al. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury. Stem Cell Reports. 2016;6(1):1-8. doi:10.1016/j.stemcr.2015.11.013
Romanyuk N, Amemori T, Turnovcova K, et al. Beneficial Effect of Human Induced Pluripotent Stem Cell-Derived Neural Precursors in Spinal Cord Injury Repair. Cell Transplant. 2015;24(9):1781-1797. doi:10.3727/096368914X684042
Salewski RP, Mitchell RA, Li L, et al. Transplantation of Induced Pluripotent Stem Cell-Derived Neural Stem Cells Mediate Functional Recovery Following Thoracic Spinal Cord Injury Through Remyelination of Axons. Stem Cells Transl Med. 2015;4(7):743-754. doi:10.5966/sctm.2014-0236
Kawabata S, Takano M, Numasawa-Kuroiwa Y, et al. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury. Stem Cell Reports. 2016;6(1):1-8. doi:10.1016/j.stemcr.2015.11.013
Salewski RP, Buttigieg J, Mitchell RA, van der Kooy D, Nagy A, Fehlings MG. The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway. Stem Cells Dev. 2013;22(3):383-396. doi:10.1089/scd.2012.0218
Kobayashi Y, Okada Y, Itakura G, et al. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One. 2012;7(12):e52787. doi:10.1371/journal.pone.0052787
López-Serrano C, Torres-Espín A, Hernández J, et al. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells. Cell Transplant. 2016;25(10):1833-1852. doi:10.3727/096368916X691312
Nutt SE, Chang EA, Suhr ST, et al. Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model. Exp Neurol. 2013;248:491-503. doi:10.1016/j.expneurol.2013.07.010
Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci. 2020;21(7):366-383. doi:10.1038/s41583-020-0314-2
Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther. 2010;21(9):1045-1056. doi:10.1089/hum.2010.115
Han D, Wu C, Xiong Q, Zhou L, Tian Y. Anti-inflammatory Mechanism of Bone Marrow Mesenchymal Stem Cell Transplantation in Rat Model of Spinal Cord Injury. Cell Biochem Biophys. 2015;71(3):1341-1347. doi:10.1007/s12013-014-0354-1
Lee MW, Yang MS, Park JS, Kim HC, Kim YJ, Choi J. Isolation of mesenchymal stem cells from cryopreserved human umbilical cord blood. Int J Hematol. 2005;81(2):126-130. doi:10.1532/ijh97.a10404
Dasari VR, Veeravalli KK, Dinh DH. Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World J Stem Cells. 2014;6(2):120-133. doi:10.4252/wjsc.v6.i2.120
Kotobuki N, Hirose M, Takakura Y, Ohgushi H. Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs. 2004;28(1):33-39. doi:10.1111/j.1525-1594.2004.07320.x
Filippi M, Boido M, Pasquino C, Garello F, Boffa C, Terreno E. Successful in vivo MRI tracking of MSCs labeled with Gadoteridol in a Spinal Cord Injury experimental model. Exp Neurol. 2016;282:66-77. doi:10.1016/j.expneurol.2016.05.023
Xia Y, Zhu J, Yang R, Wang H, Li Y, Fu C. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges. Front Immunol. 2023;14:1141601. Published 2023 Feb 24. doi:10.3389/fimmu.2023.1141601
Kouroupis D, Sanjurjo-Rodriguez C, Jones E, Correa D. Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. Tissue Eng Part B Rev. 2019;25(1):55-77. doi:10.1089/ten.TEB.2018.0118
Ryu HH, Kang BJ, Park SS, et al. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton's jelly, and umbilical cord blood for treating spinal cord injuries in dogs. J Vet Med Sci. 2012;74(12):1617-1630. doi:10.1292/jvms.12-0065
Zhu X, Liu Z, Deng W, et al. Derivation and characterization of sheep bone marrow-derived mesenchymal stem cells induced with telomerase reverse transcriptase. Saudi J Biol Sci. 2017;24(3):519-525. doi:10.1016/j.sjbs.2017.01.022
Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol. 2002;30(8):879-886. doi:10.1016/s0301-472x(02)00864-0
Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 2005;319(2):243-253. doi:10.1007/s00441-004-1012-5
Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells. 2005;23(3):392-402. doi:10.1634/stemcells.2004-0149
Deng YB, Liu XG, Liu ZG, Liu XL, Liu Y, Zhou GQ. Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery: evidence from a study in rhesus monkeys. Cytotherapy. 2006;8(3):210-214. doi:10.1080/14653240600760808
Jeon, S. R., Park, J. H., Lee, J. H., Kim, D. Y., Kim, H. S., Sung, I. Y., ... & Kim, G. G. (2010). Treatment of spinal cord injury with bone marrow-derived, cultured autologous mesenchymal stem cells. Tissue Eng Regen Med, 7(3), 316-322.
Dai G, Liu X, Zhang Z, Yang Z, Dai Y, Xu R. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Res. 2013;1533:73-79. doi:10.1016/j.brainres.2013.08.016
Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91(8):1017-1026.
Kaner T, Karadag T, Cirak B, et al. The effects of human umbilical cord blood transplantation in rats with experimentally induced spinal cord injury. J Neurosurg Spine. 2010;13(4):543-551. doi:10.3171/2010.4.SPINE09685
Kuh SU, Cho YE, Yoon DH, Kim KN, Ha Y. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochir (Wien). 2005;147(9):985-992. doi:10.1007/s00701-005-0538-y
Yao L, He C, Zhao Y, et al. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury: Electrophysiological changes and long-term efficacy. Neural Regen Res. 2013;8(5):397-403. doi:10.3969/j.issn.1673-5374.2013.05.002
Zhu H, Poon W, Liu Y, et al. Phase I-II Clinical Trial Assessing Safety and Efficacy of Umbilical Cord Blood Mononuclear Cell Transplant Therapy of Chronic Complete Spinal Cord Injury. Cell Transplant. 2016;25(11):1925-1943. doi:10.3727/096368916X691411
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228. doi:10.1089/107632701300062859
Kolar MK, Kingham PJ, Novikova LN, Wiberg M, Novikov LN. The therapeutic effects of human adipose-derived stem cells in a rat cervical spinal cord injury model. Stem Cells Dev. 2014;23(14):1659-1674. doi:10.1089/scd.2013.0416
Jin MC, Medress ZA, Azad TD, Doulames VM, Veeravagu A. Stem cell therapies for acute spinal cord injury in humans: a review. Neurosurg Focus. 2019;46(3):E10. doi:10.3171/2018.12.FOCUS18602
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Filip Borodziuk, Barbara Borodziuk, Katarzyna Ciuba, Paulina Dąbrowska, Michał Żuber, Karol Bochyński, Katarzyna Molenda, Michał Dacka, Kamila Giżewska, Konrad Białogłowski
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 139
Number of citations: 0