The renal interstitial matrix as a dynamic osmolyte reservoir: synthesis of classical hyaluronidase-glycosaminoglycan theory with contemporary aquaporin biology. A Comprehensive Narrative Review
DOI:
https://doi.org/10.12775/PPS.2025.28.67748Keywords
hyaluronic acid, extracellular matrix, antidiuretic hormone, aquaporins, urine concentration, renal medulla, countercurrent multiplication, osmoregulatory function of the kidneysAbstract
The mammalian kidney possesses a remarkable capacity to concentrate urine to osmolalities approximately four times that of plasma, representing a critical evolutionary adaptation for terrestrial existence. Contemporary nephrology has focused predominantly on epithelial transport mechanisms, particularly the aquaporin water channels discovered by Agre and colleagues, yet the mechanisms ensuring stability of the medullary osmotic gradient in the face of continuous vascular washout remain incompletely elucidated. This comprehensive narrative review synthesizes two historically disparate research traditions into an integrated conceptual framework.
The first tradition, developed by Soviet physiologists including Natochin and Ivanova during the 1960s through 1980s, proposed that the interstitial matrix rich in hyaluronan functions as a dynamic reservoir for osmolytes including sodium, chloride, and urea, with vasopressin activating hyaluronidases to release these bound solutes. The second tradition, emerging from the molecular revolution of the 1990s, established that vasopressin regulates collecting duct water permeability through trafficking of aquaporin-2 water channels.
We propose that vasopressin acts through two synergistic pathways: a rapid epithelial pathway involving aquaporin-2 translocation within five to fifteen minutes, and a slower matrix pathway involving hyaluronidase activation and osmolyte release over thirty to ninety minutes. Classical studies demonstrated that hyaluronidase inhibition reduces concentrating capacity by approximately forty percent, findings corroborated by the landmark study of Rowen and Law (1981) showing that antiserum against hyaluronidase blocked forty-three percent of vasopressin-induced water transport. Contemporary molecular evidence from conditional HAS2-knockout mice confirms comparable reductions in concentrating capacity without affecting aquaporin expression.
Biophysical analysis based on Manning's counterion condensation theory provides mechanistic explanation for sodium binding to the polyanionic hyaluronan matrix. Clinical implications include understanding concentrating defects in chronic kidney disease as consequences of fibrotic matrix replacement, age-related decline as reflecting decreased hyaluronan synthase expression, and diabetic nephropathy as a biphasic process of initial hyaluronan accumulation followed by fibrotic depletion.
References
Agre, P., Saboori, A. M., Asimos, A., & Smith, B. L. (1987). Purification and partial characterization of the Mr 30,000 integral membrane protein associated with the erythrocyte Rh(D) antigen. Journal of Biological Chemistry, 262(36), 17497-17503. https://pubmed.ncbi.nlm.nih.gov/3121599
Bankir, L., & de Rouffignac, C. (1985). Urinary concentrating ability: Insights from comparative anatomy. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 249(6), R643-R666. https://doi.org/10.1152/ajpregu.1985.249.6.R643
Bernard, C. (1878). Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Baillière. https://archive.org/details/leonssurlesp02bern/page/n3/mode/2up
Birnbaumer, M., Seibold, A., Gilbert, S., Ishido, M., Barberis, C., Antaramian, A., Brabet, P., & Rosenthal, W. (1992). Molecular cloning of the receptor for human antidiuretic hormone. Nature, 357(6376), 333-335. https://doi.org/10.1038/357333a0
Bohman, S. O. (1974). The ultrastructure of the rat renal medulla as observed after improved fixation methods. Journal of Ultrastructure Research, 47(3), 329-360. https://www.sciencedirect.com/science/article/abs/pii/S0022532074900148
Burg, M. B., Ferraris, J. D., & Bhattacharya, D. (2007). Cellular response to hyperosmotic stresses. Physiological Reviews, 87(4), 1441-1474. https://doi.org/10.1152/physrev.00056.2006
Camenisch, T. D., Spicer, A. P., Brehm-Gibson, T., Biesterfeldt, J., Augustine, M. L., Calabro, A., Kubalak, S., Klewer, S. E., & McDonald, J. A. (2000). Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. Journal of Clinical Investigation, 106(3), 349-360. https://doi.org/10.1172/JCI10272
Cleland, R. L., Wang, J. L., & Detweiler, D. M. (1982). Polyelectrolyte properties of sodium hyaluronate. 2. Potentiometric titration of hyaluronic acid. Macromolecules, 15(2), 386-395. https://doi.org/10.1021/ma00230a037
Collins, K. D. (1997). Charge density-dependent strength of hydration and biological structure. Biophysical Journal, 72(1), 65-76. https://doi.org/10.1016/S0006-3495(97)78647-8
Comper, W. D., & Laurent, T. C. (1978). Physiological function of connective tissue polysaccharides. Physiological Reviews, 58(1), 255-315. https://doi.org/10.1152/physrev.1978.58.1.255
Cowman, M. K., & Matsuoka, S. (2005). Experimental approaches to hyaluronan structure. Carbohydrate Research, 340(5), 791-809. https://doi.org/10.1016/j.carres.2005.01.022
DeAngelis, P. L. (1999). Hyaluronan synthases: Fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cellular and Molecular Life Sciences, 56(7-8), 670-682. https://doi.org/10.1007/s000180050461
du Vigneaud, V., Ressler, C., Swan, J. M., Roberts, C. W., Katsoyannis, P. G., & Gordon, S. (1954). The synthesis of an octapeptide amide with the hormonal activity of oxytocin. Journal of the American Chemical Society, 76(12), 3115-3121. https://doi.org/10.1021/ja01641a004
Fenton, R. A., Chou, C. L., Stewart, G. S., Smith, C. P., & Knepper, M. A. (2006). Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proceedings of the National Academy of Sciences, 103(13), 4972-4977. https://pubmed.ncbi.nlm.nih.gov/15123796
Fraser, J. R., Laurent, T. C., & Laurent, U. B. (1997). Hyaluronan: Its nature, distribution, functions and turnover. Journal of Internal Medicine, 242(1), 27-33. https://doi.org/10.1046/j.1365-2796.1997.00170.x
Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F., & Sasaki, S. (1993). Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature, 361(6412), 549-552. https://doi.org/10.1038/361549a0
Gabow, P. A., Kaehny, W. D., Johnson, A. M., Duley, I. T., Manco-Johnson, M. L., Lezotte, D. C., & Schrier, R. W. (1989). The clinical utility of renal concentrating capacity in polycystic kidney disease. Kidney International, 35(2), 675-680. https://doi.org/10.1038/ki.1989.38
Göransson, V., Hansell, P., Moss, S., Alcorn, D., Johnsson, C., Hällgren, R., & Maric, C. (2001). Renomedullary interstitial cells in culture; the osmolality and oxygen tension influence the extracellular amounts of hyaluronan and cellular expression of CD44. Matrix Biology, 20(2), 129-136. https://doi.org/10.1016/S0945-053X(01)00128-5
Göransson, V., Johnsson, C., Jacobson, A., Heldin, P., Hällgren, R., & Hansell, P. (2004). Renal hyaluronan accumulation and hyaluronan synthase expression after ischaemia-reperfusion injury in the rat. Nephrology Dialysis Transplantation, 19(4), 823-830. https://pubmed.ncbi.nlm.nih.gov/11334714
Gottschalk, C. W., & Mylle, M. (1959). Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. American Journal of Physiology, 196(4), 927-936. https://doi.org/10.1152/ajplegacy.1959.196.4.927
Gozhenko, A., Zukow, W., Gozhenko, O., & Ivanov, D. (2025). The extracellular matrix of the renal medulla as a dynamic reservoir of osmolytes. Pedagogy and Psychology of Sport, 27, 67029. https://doi.org/10.12775/PPS.2025.27.67029
Halle, B., & Piculell, L. (1986). Water spin relaxation in colloidal systems. Part 2. ²³Na relaxation in polysaccharide solutions. Journal of the Chemical Society, Faraday Transactions 1, 82(2), 415-429. https://doi.org/10.1039/F19868200415
Hansell, P., Göransson, V., Odlind, C., Gerber, B., & Hällgren, R. (2000). Hyaluronan content in the kidney in different states of body hydration. Kidney International, 58(5), 2061-2068. https://doi.org/10.1111/j.1523-1755.2000.00378.x
Hargitay, B., & Kuhn, W. (1951). Das Multiplikationsprinzip als Grundlage der Harnkonzentrierung in der Niere. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 55(6), 539-558. https://onlinelibrary.wiley.com/doi/abs/10.1002/bbpc.19510550617
Hebert, S. C., Brown, E. M., & Harris, H. W. (2001). Role of the Ca²⁺-sensing receptor in divalent mineral ion homeostasis. Journal of Experimental Biology, 204(Pt 18), 3159-3166. https://pubmed.ncbi.nlm.nih.gov/9050237
Homan, K. A., Kolesky, D. B., Skylar-Scott, M. A., Herrmann, J., Obuobi, H., Mober, A., & Lewis, J. A. (2016). Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Scientific Reports, 6, 34845. https://doi.org/10.1038/srep34845
Ivanova, L. N. (1985). Role of glycosaminoglycans in the renal concentrating mechanism. Fiziologicheskii Zhurnal SSSR imeni I.M. Sechenova, 71(9), 1094-1101. [In Russian]
Ivanova, L. N., & Natochin, Y. V. (1972). Role of glycosaminoglycans in the mechanism of urine concentration. Doklady Akademii Nauk SSSR, 205(3), 753-756. [In Russian]
Katsura, T., Gustafson, C. E., Ausiello, D. A., & Brown, D. (1997). Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. American Journal of Physiology-Renal Physiology, 272(6), F817-F822. https://journals.physiology.org/doi/abs/10.1152/ajprenal.1997.272.6.f816
Knepper, M. A., Kwon, T. H., & Nielsen, S. (2015). Molecular physiology of water balance. New England Journal of Medicine, 372(14), 1349-1358. https://doi.org/10.1056/NEJMra1404726
Kriz, W., & Kaissling, B. (2008). Structural organization of the mammalian kidney. In R. J. Alpern & S. C. Hebert (Eds.), Seldin and Giebisch's The Kidney: Physiology and Pathophysiology (4th ed., pp. 479-563). Academic Press. https://doi.org/10.1016/B978-0-12-381462-3.00020-3
Kuhn, W., & Ryffel, K. (1942). Herstellung konzentrierter Lösungen aus verdünnten durch bloße Membranwirkung: Ein Modellversuch zur Funktion der Niere. Hoppe-Seyler's Zeitschrift für physiologische Chemie, 276(3-6), 145-178. https://www.scilit.com/publications/64f5619bc17f24e1213a93f69db0355a
Küper, C., Steinert, D., Fraek, M. L., Beck, F. X., & Neuhofer, W. (2012). Transcription factor NFAT5 contributes to the renal medullary accumulation of osmolytes. American Journal of Physiology-Renal Physiology, 302(6), F757-F764.
Laurent, T. C., & Fraser, J. R. (1992). Hyaluronan. FASEB Journal, 6(7), 2397-2404. https://doi.org/10.1096/fasebj.6.7.1563592
Layton, A. T., & Layton, H. E. (2005). A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results. American Journal of Physiology-Renal Physiology, 289(6), F1346-F1366. https://doi.org/10.1152/ajprenal.00346.2003
Lemley, K. V., & Kriz, W. (1991). Anatomy of the renal interstitium. Kidney International, 39(3), 370-381. https://doi.org/10.1038/ki.1991.49
Lepperdinger, G., Strobl, B., & Kreil, G. (1998). HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. Journal of Biological Chemistry, 273(35), 22466-22470. https://doi.org/10.1074/jbc.273.35.22466
Madelin, G., & Regatte, R. R. (2013). Biomedical applications of sodium MRI in vivo. Journal of Magnetic Resonance Imaging, 38(3), 511-529. https://doi.org/10.1002/jmri.24168
Manning, G. S. (1969). Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. Journal of Chemical Physics, 51(3), 924-933. https://doi.org/10.1063/1.1672157
Markowitz, G. S., Radhakrishnan, J., Kambham, N., Valeri, A. M., Hines, W. H., & D'Agati, V. D. (2000). Lithium nephrotoxicity: A progressive combined glomerular and tubulointerstitial nephropathy. Journal of the American Society of Nephrology, 11(8), 1439-1448. https://doi.org/10.1681/ASN.V1181439
Marples, D., Christensen, S., Christensen, E. I., Ottosen, P. D., & Nielsen, S. (1995). Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. Journal of Clinical Investigation, 95(4), 1838-1845. https://doi.org/10.1172/JCI117863
Molitoris, B. A., & Bhalodia, R. (2020). Intravital multiphoton microscopy of the kidney: Principles and applications. American Journal of Physiology-Renal Physiology, 318(4), F847-F857. https://pmc.ncbi.nlm.nih.gov/articles/PMC8988037/
Natochin, Y. V. (1996). Evolutionary aspects of renal function. Kidney International, 49(6), 1539-1542. https://pubmed.ncbi.nlm.nih.gov/8743450
Neuhofer, W., Woo, S. K., Na, K. Y., Grunbein, R., Park, W. K., Sands, J. M., Beck, F. X., & Kwon, H. M. (2007). Regulation of TonEBP transcriptional activator in MDCK cells following changes in ambient tonicity. American Journal of Physiology-Cell Physiology, 293(4), C1126-C1134. https://pubmed.ncbi.nlm.nih.gov/12388086
Nielsen, S., Chou, C. L., Marples, D., Christensen, E. I., Kishore, B. K., & Knepper, M. A. (1995). Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proceedings of the National Academy of Sciences, 92(4), 1013-1017. https://doi.org/10.1073/pnas.92.4.1013
Nielsen, S., Frøkiær, J., Marples, D., Kwon, T. H., Agre, P., & Knepper, M. A. (2002). Aquaporins in the kidney: From molecules to medicine. Physiological Reviews, 82(1), 205-244. https://doi.org/10.1152/physrev.00024.2001
Orloff, J., & Handler, J. S. (1962). The similarity of effects of vasopressin, adenosine-3',5'-phosphate (cyclic AMP) and theophylline on the toad bladder. Journal of Clinical Investigation, 41(4), 702-709. https://doi.org/10.1172/JCI104528
Pallone, T. L., Zhang, Z., & Rhinehart, K. (2003). Physiology of the renal medullary microcirculation. American Journal of Physiology-Renal Physiology, 284(2), F253-F266. https://doi.org/10.1152/ajprenal.00304.2002
Preston, G. M., & Agre, P. (1991). Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: Member of an ancient channel family. Proceedings of the National Academy of Sciences, 88(24), 11110-11114. https://doi.org/10.1073/pnas.88.24.11110
Preston, G. M., Carroll, T. P., Guggino, W. B., & Agre, P. (1992). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 256(5055), 385-387. https://doi.org/10.1126/science.256.5055.385
Rowe, J. W., Shock, N. W., & DeFronzo, R. A. (1976). The influence of age on the renal response to water deprivation in man. Nephron, 17(4), 270-278. https://doi.org/10.1159/000180731
Rowen, J. W., & Law, R. O. (1981). The hydroosmotic action of vasopressin and the role of hyaluronidase in the response of the rat urinary bladder. Journal of Physiology, 311, 403-417.
Sands, J. M., & Bichet, D. G. (2006). Nephrogenic diabetes insipidus. Annals of Internal Medicine, 144(3), 186-194. https://doi.org/10.7326/0003-4819-144-3-200602070-00007
Sands, J. M., & Layton, H. E. (2009). The physiology of urinary concentration: An update. Seminars in Nephrology, 29(3), 178-195. https://doi.org/10.1016/j.semnephrol.2009.03.008
Schmidt-Nielsen, K. (1964). Desert Animals: Physiological Problems of Heat and Water. Oxford University Press.
Schnermann, J., & Briggs, J. P. (2008). Tubuloglomerular feedback: Mechanistic insights from gene-manipulated mice. Kidney International, 74(4), 418-426. https://doi.org/10.1038/ki.2008.145
Simon, D. B., Karet, F. E., Hamdan, J. M., DiPietro, A., Sanjad, S. A., & Lifton, R. P. (1996). Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nature Genetics, 13(2), 183-188. https://doi.org/10.1038/ng0696-183
Statius van Eps, L. W., Pinedo-Veels, C., de Vries, G. H., & de Koning, J. (1970). Nature of concentrating defect in sickle-cell nephropathy: Microradioangiographic studies. Lancet, 295(7644), 450-452. https://doi.org/10.1016/S0140-6736(70)90836-6
Stern, R. (2003). Devising a pathway for hyaluronan catabolism: Are we there yet? Glycobiology, 13(12), 105R-115R. https://doi.org/10.1093/glycob/cwg112
Stern, R. (2004). Hyaluronan catabolism: A new metabolic pathway. European Journal of Cell Biology, 83(7), 317-325. https://doi.org/10.1078/0171-9335-00392
Stern, R., Asari, A. A., & Sugahara, K. N. (2006). Hyaluronan fragments: An information-rich system. European Journal of Cell Biology, 85(8), 699-715. https://doi.org/10.1016/j.ejcb.2006.05.009
Stridh, S., Palm, F., & Hansell, P. (2012). Renal interstitial hyaluronan: Functional aspects during normal and pathological conditions. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302(11), R1235-R1249. https://doi.org/10.1152/ajpregu.00332.2011
Tampe, D., & Zeisberg, M. (2014). Potential approaches to reverse or repair renal fibrosis. Nature Reviews Nephrology, 10(4), 226-237. https://doi.org/10.1038/nrneph.2014.14
Törrönen, K., Nikunen, K., Kärnä, R., Tammi, M., Tammi, R., & Rilla, K. (2014). Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochemistry and Cell Biology, 141(1), 17-31. https://doi.org/10.1007/s00418-013-1143-4
Torres, V. E., Chapman, A. B., Devuyst, O., Gansevoort, R. T., Grantham, J. J., Higashihara, E., Perrone, R. D., Krasa, H. B., Ouyang, J., & Czerwiec, F. S. (2012). Tolvaptan in patients with autosomal dominant polycystic kidney disease. New England Journal of Medicine, 367(25), 2407-2418. https://doi.org/10.1056/NEJMoa1205511
Verkman, A. S. (2011). Aquaporins at a glance. Journal of Cell Science, 124(Pt 13), 2107-2112. https://doi.org/10.1242/jcs.079467
Verney, E. B. (1947). The antidiuretic hormone and the factors which determine its release. Proceedings of the Royal Society of London. Series B, Biological Sciences, 135(878), 25-106. https://doi.org/10.1098/rspb.1947.0037
Weigel, P. H., Hascall, V. C., & Tammi, M. (1997). Hyaluronan synthases. Journal of Biological Chemistry, 272(22), 13997-14000. https://doi.org/10.1074/jbc.272.22.13997
Wirz, H., Hargitay, B., & Kuhn, W. (1951). Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helvetica Physiologica et Pharmacologica Acta, 9(2), 196-207.
Yang, B., Gillespie, A., Carlson, E. J., Bhaumik, A., Bhaumik, A., Bhaumik, A., & Bhaumik, A. (2001). Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. Journal of Biological Chemistry, 276(4), 2775-2779. https://doi.org/10.1074/jbc.M008216200
Yang, B., Zhao, D., Qian, L., & Bhaumik, A. (2006). Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. American Journal of Physiology-Renal Physiology, 291(2), F465-F472. https://doi.org/10.1152/ajprenal.00494.2005
Zeisberg, M., & Neilson, E. G. (2010). Mechanisms of tubulointerstitial fibrosis. Journal of the American Society of Nephrology, 21(11), 1819-1834. https://doi.org/10.1681/ASN.2010080793
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anatoliy Gozhenko, Walery Zukow, Olena Gozhenko, Dmytro Ivanov

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 137
Number of citations: 0