Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Pedagogy and Psychology of Sport

The renal interstitial matrix as a dynamic osmolyte reservoir: synthesis of classical hyaluronidase-glycosaminoglycan theory with contemporary aquaporin biology. A Comprehensive Narrative Review
  • Home
  • /
  • The renal interstitial matrix as a dynamic osmolyte reservoir: synthesis of classical hyaluronidase-glycosaminoglycan theory with contemporary aquaporin biology. A Comprehensive Narrative Review
  1. Home /
  2. Archives /
  3. Vol. 28 (2025) /
  4. Medical Sciences

The renal interstitial matrix as a dynamic osmolyte reservoir: synthesis of classical hyaluronidase-glycosaminoglycan theory with contemporary aquaporin biology. A Comprehensive Narrative Review

Authors

  • Anatoliy Gozhenko Ukrainian Scientific Research Institute for Medicine of Transport, Odesa, Ukraine https://orcid.org/0000-0001-7413-4173
  • Walery Zukow Nicolaus Copernicus University, Toruń, Poland https://orcid.org/0000-0002-7675-6117
  • Olena Gozhenko Ukrainian Scientific Research Institute for Medicine of Transport, Odesa, Ukraine https://orcid.org/0000-0002-4071-1304
  • Dmytro Ivanov Bogomolets National Medical University, Kyiv, Ukraine https://orcid.org/0000-0003-2609-0051

DOI:

https://doi.org/10.12775/PPS.2025.28.67748

Keywords

hyaluronic acid, extracellular matrix, antidiuretic hormone, aquaporins, urine concentration, renal medulla, countercurrent multiplication, osmoregulatory function of the kidneys

Abstract

The mammalian kidney possesses a remarkable capacity to concentrate urine to osmolalities approximately four times that of plasma, representing a critical evolutionary adaptation for terrestrial existence. Contemporary nephrology has focused predominantly on epithelial transport mechanisms, particularly the aquaporin water channels discovered by Agre and colleagues, yet the mechanisms ensuring stability of the medullary osmotic gradient in the face of continuous vascular washout remain incompletely elucidated. This comprehensive narrative review synthesizes two historically disparate research traditions into an integrated conceptual framework.

The first tradition, developed by Soviet physiologists including Natochin and Ivanova during the 1960s through 1980s, proposed that the interstitial matrix rich in hyaluronan functions as a dynamic reservoir for osmolytes including sodium, chloride, and urea, with vasopressin activating hyaluronidases to release these bound solutes. The second tradition, emerging from the molecular revolution of the 1990s, established that vasopressin regulates collecting duct water permeability through trafficking of aquaporin-2 water channels.

We propose that vasopressin acts through two synergistic pathways: a rapid epithelial pathway involving aquaporin-2 translocation within five to fifteen minutes, and a slower matrix pathway involving hyaluronidase activation and osmolyte release over thirty to ninety minutes. Classical studies demonstrated that hyaluronidase inhibition reduces concentrating capacity by approximately forty percent, findings corroborated by the landmark study of Rowen and Law (1981) showing that antiserum against hyaluronidase blocked forty-three percent of vasopressin-induced water transport. Contemporary molecular evidence from conditional HAS2-knockout mice confirms comparable reductions in concentrating capacity without affecting aquaporin expression.

Biophysical analysis based on Manning's counterion condensation theory provides mechanistic explanation for sodium binding to the polyanionic hyaluronan matrix. Clinical implications include understanding concentrating defects in chronic kidney disease as consequences of fibrotic matrix replacement, age-related decline as reflecting decreased hyaluronan synthase expression, and diabetic nephropathy as a biphasic process of initial hyaluronan accumulation followed by fibrotic depletion.

References

Agre, P., Saboori, A. M., Asimos, A., & Smith, B. L. (1987). Purification and partial characterization of the Mr 30,000 integral membrane protein associated with the erythrocyte Rh(D) antigen. Journal of Biological Chemistry, 262(36), 17497-17503. https://pubmed.ncbi.nlm.nih.gov/3121599

Bankir, L., & de Rouffignac, C. (1985). Urinary concentrating ability: Insights from comparative anatomy. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 249(6), R643-R666. https://doi.org/10.1152/ajpregu.1985.249.6.R643

Bernard, C. (1878). Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Baillière. https://archive.org/details/leonssurlesp02bern/page/n3/mode/2up

Birnbaumer, M., Seibold, A., Gilbert, S., Ishido, M., Barberis, C., Antaramian, A., Brabet, P., & Rosenthal, W. (1992). Molecular cloning of the receptor for human antidiuretic hormone. Nature, 357(6376), 333-335. https://doi.org/10.1038/357333a0

Bohman, S. O. (1974). The ultrastructure of the rat renal medulla as observed after improved fixation methods. Journal of Ultrastructure Research, 47(3), 329-360. https://www.sciencedirect.com/science/article/abs/pii/S0022532074900148

Burg, M. B., Ferraris, J. D., & Bhattacharya, D. (2007). Cellular response to hyperosmotic stresses. Physiological Reviews, 87(4), 1441-1474. https://doi.org/10.1152/physrev.00056.2006

Camenisch, T. D., Spicer, A. P., Brehm-Gibson, T., Biesterfeldt, J., Augustine, M. L., Calabro, A., Kubalak, S., Klewer, S. E., & McDonald, J. A. (2000). Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. Journal of Clinical Investigation, 106(3), 349-360. https://doi.org/10.1172/JCI10272

Cleland, R. L., Wang, J. L., & Detweiler, D. M. (1982). Polyelectrolyte properties of sodium hyaluronate. 2. Potentiometric titration of hyaluronic acid. Macromolecules, 15(2), 386-395. https://doi.org/10.1021/ma00230a037

Collins, K. D. (1997). Charge density-dependent strength of hydration and biological structure. Biophysical Journal, 72(1), 65-76. https://doi.org/10.1016/S0006-3495(97)78647-8

Comper, W. D., & Laurent, T. C. (1978). Physiological function of connective tissue polysaccharides. Physiological Reviews, 58(1), 255-315. https://doi.org/10.1152/physrev.1978.58.1.255

Cowman, M. K., & Matsuoka, S. (2005). Experimental approaches to hyaluronan structure. Carbohydrate Research, 340(5), 791-809. https://doi.org/10.1016/j.carres.2005.01.022

DeAngelis, P. L. (1999). Hyaluronan synthases: Fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cellular and Molecular Life Sciences, 56(7-8), 670-682. https://doi.org/10.1007/s000180050461

du Vigneaud, V., Ressler, C., Swan, J. M., Roberts, C. W., Katsoyannis, P. G., & Gordon, S. (1954). The synthesis of an octapeptide amide with the hormonal activity of oxytocin. Journal of the American Chemical Society, 76(12), 3115-3121. https://doi.org/10.1021/ja01641a004

Fenton, R. A., Chou, C. L., Stewart, G. S., Smith, C. P., & Knepper, M. A. (2006). Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proceedings of the National Academy of Sciences, 103(13), 4972-4977. https://pubmed.ncbi.nlm.nih.gov/15123796

Fraser, J. R., Laurent, T. C., & Laurent, U. B. (1997). Hyaluronan: Its nature, distribution, functions and turnover. Journal of Internal Medicine, 242(1), 27-33. https://doi.org/10.1046/j.1365-2796.1997.00170.x

Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F., & Sasaki, S. (1993). Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature, 361(6412), 549-552. https://doi.org/10.1038/361549a0

Gabow, P. A., Kaehny, W. D., Johnson, A. M., Duley, I. T., Manco-Johnson, M. L., Lezotte, D. C., & Schrier, R. W. (1989). The clinical utility of renal concentrating capacity in polycystic kidney disease. Kidney International, 35(2), 675-680. https://doi.org/10.1038/ki.1989.38

Göransson, V., Hansell, P., Moss, S., Alcorn, D., Johnsson, C., Hällgren, R., & Maric, C. (2001). Renomedullary interstitial cells in culture; the osmolality and oxygen tension influence the extracellular amounts of hyaluronan and cellular expression of CD44. Matrix Biology, 20(2), 129-136. https://doi.org/10.1016/S0945-053X(01)00128-5

Göransson, V., Johnsson, C., Jacobson, A., Heldin, P., Hällgren, R., & Hansell, P. (2004). Renal hyaluronan accumulation and hyaluronan synthase expression after ischaemia-reperfusion injury in the rat. Nephrology Dialysis Transplantation, 19(4), 823-830. https://pubmed.ncbi.nlm.nih.gov/11334714

Gottschalk, C. W., & Mylle, M. (1959). Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. American Journal of Physiology, 196(4), 927-936. https://doi.org/10.1152/ajplegacy.1959.196.4.927

Gozhenko, A., Zukow, W., Gozhenko, O., & Ivanov, D. (2025). The extracellular matrix of the renal medulla as a dynamic reservoir of osmolytes. Pedagogy and Psychology of Sport, 27, 67029. https://doi.org/10.12775/PPS.2025.27.67029

Halle, B., & Piculell, L. (1986). Water spin relaxation in colloidal systems. Part 2. ²³Na relaxation in polysaccharide solutions. Journal of the Chemical Society, Faraday Transactions 1, 82(2), 415-429. https://doi.org/10.1039/F19868200415

Hansell, P., Göransson, V., Odlind, C., Gerber, B., & Hällgren, R. (2000). Hyaluronan content in the kidney in different states of body hydration. Kidney International, 58(5), 2061-2068. https://doi.org/10.1111/j.1523-1755.2000.00378.x

Hargitay, B., & Kuhn, W. (1951). Das Multiplikationsprinzip als Grundlage der Harnkonzentrierung in der Niere. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 55(6), 539-558. https://onlinelibrary.wiley.com/doi/abs/10.1002/bbpc.19510550617

Hebert, S. C., Brown, E. M., & Harris, H. W. (2001). Role of the Ca²⁺-sensing receptor in divalent mineral ion homeostasis. Journal of Experimental Biology, 204(Pt 18), 3159-3166. https://pubmed.ncbi.nlm.nih.gov/9050237

Homan, K. A., Kolesky, D. B., Skylar-Scott, M. A., Herrmann, J., Obuobi, H., Mober, A., & Lewis, J. A. (2016). Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Scientific Reports, 6, 34845. https://doi.org/10.1038/srep34845

Ivanova, L. N. (1985). Role of glycosaminoglycans in the renal concentrating mechanism. Fiziologicheskii Zhurnal SSSR imeni I.M. Sechenova, 71(9), 1094-1101. [In Russian]

Ivanova, L. N., & Natochin, Y. V. (1972). Role of glycosaminoglycans in the mechanism of urine concentration. Doklady Akademii Nauk SSSR, 205(3), 753-756. [In Russian]

Katsura, T., Gustafson, C. E., Ausiello, D. A., & Brown, D. (1997). Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. American Journal of Physiology-Renal Physiology, 272(6), F817-F822. https://journals.physiology.org/doi/abs/10.1152/ajprenal.1997.272.6.f816

Knepper, M. A., Kwon, T. H., & Nielsen, S. (2015). Molecular physiology of water balance. New England Journal of Medicine, 372(14), 1349-1358. https://doi.org/10.1056/NEJMra1404726

Kriz, W., & Kaissling, B. (2008). Structural organization of the mammalian kidney. In R. J. Alpern & S. C. Hebert (Eds.), Seldin and Giebisch's The Kidney: Physiology and Pathophysiology (4th ed., pp. 479-563). Academic Press. https://doi.org/10.1016/B978-0-12-381462-3.00020-3

Kuhn, W., & Ryffel, K. (1942). Herstellung konzentrierter Lösungen aus verdünnten durch bloße Membranwirkung: Ein Modellversuch zur Funktion der Niere. Hoppe-Seyler's Zeitschrift für physiologische Chemie, 276(3-6), 145-178. https://www.scilit.com/publications/64f5619bc17f24e1213a93f69db0355a

Küper, C., Steinert, D., Fraek, M. L., Beck, F. X., & Neuhofer, W. (2012). Transcription factor NFAT5 contributes to the renal medullary accumulation of osmolytes. American Journal of Physiology-Renal Physiology, 302(6), F757-F764.

Laurent, T. C., & Fraser, J. R. (1992). Hyaluronan. FASEB Journal, 6(7), 2397-2404. https://doi.org/10.1096/fasebj.6.7.1563592

Layton, A. T., & Layton, H. E. (2005). A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results. American Journal of Physiology-Renal Physiology, 289(6), F1346-F1366. https://doi.org/10.1152/ajprenal.00346.2003

Lemley, K. V., & Kriz, W. (1991). Anatomy of the renal interstitium. Kidney International, 39(3), 370-381. https://doi.org/10.1038/ki.1991.49

Lepperdinger, G., Strobl, B., & Kreil, G. (1998). HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. Journal of Biological Chemistry, 273(35), 22466-22470. https://doi.org/10.1074/jbc.273.35.22466

Madelin, G., & Regatte, R. R. (2013). Biomedical applications of sodium MRI in vivo. Journal of Magnetic Resonance Imaging, 38(3), 511-529. https://doi.org/10.1002/jmri.24168

Manning, G. S. (1969). Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. Journal of Chemical Physics, 51(3), 924-933. https://doi.org/10.1063/1.1672157

Markowitz, G. S., Radhakrishnan, J., Kambham, N., Valeri, A. M., Hines, W. H., & D'Agati, V. D. (2000). Lithium nephrotoxicity: A progressive combined glomerular and tubulointerstitial nephropathy. Journal of the American Society of Nephrology, 11(8), 1439-1448. https://doi.org/10.1681/ASN.V1181439

Marples, D., Christensen, S., Christensen, E. I., Ottosen, P. D., & Nielsen, S. (1995). Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. Journal of Clinical Investigation, 95(4), 1838-1845. https://doi.org/10.1172/JCI117863

Molitoris, B. A., & Bhalodia, R. (2020). Intravital multiphoton microscopy of the kidney: Principles and applications. American Journal of Physiology-Renal Physiology, 318(4), F847-F857. https://pmc.ncbi.nlm.nih.gov/articles/PMC8988037/

Natochin, Y. V. (1996). Evolutionary aspects of renal function. Kidney International, 49(6), 1539-1542. https://pubmed.ncbi.nlm.nih.gov/8743450

Neuhofer, W., Woo, S. K., Na, K. Y., Grunbein, R., Park, W. K., Sands, J. M., Beck, F. X., & Kwon, H. M. (2007). Regulation of TonEBP transcriptional activator in MDCK cells following changes in ambient tonicity. American Journal of Physiology-Cell Physiology, 293(4), C1126-C1134. https://pubmed.ncbi.nlm.nih.gov/12388086

Nielsen, S., Chou, C. L., Marples, D., Christensen, E. I., Kishore, B. K., & Knepper, M. A. (1995). Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proceedings of the National Academy of Sciences, 92(4), 1013-1017. https://doi.org/10.1073/pnas.92.4.1013

Nielsen, S., Frøkiær, J., Marples, D., Kwon, T. H., Agre, P., & Knepper, M. A. (2002). Aquaporins in the kidney: From molecules to medicine. Physiological Reviews, 82(1), 205-244. https://doi.org/10.1152/physrev.00024.2001

Orloff, J., & Handler, J. S. (1962). The similarity of effects of vasopressin, adenosine-3',5'-phosphate (cyclic AMP) and theophylline on the toad bladder. Journal of Clinical Investigation, 41(4), 702-709. https://doi.org/10.1172/JCI104528

Pallone, T. L., Zhang, Z., & Rhinehart, K. (2003). Physiology of the renal medullary microcirculation. American Journal of Physiology-Renal Physiology, 284(2), F253-F266. https://doi.org/10.1152/ajprenal.00304.2002

Preston, G. M., & Agre, P. (1991). Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: Member of an ancient channel family. Proceedings of the National Academy of Sciences, 88(24), 11110-11114. https://doi.org/10.1073/pnas.88.24.11110

Preston, G. M., Carroll, T. P., Guggino, W. B., & Agre, P. (1992). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 256(5055), 385-387. https://doi.org/10.1126/science.256.5055.385

Rowe, J. W., Shock, N. W., & DeFronzo, R. A. (1976). The influence of age on the renal response to water deprivation in man. Nephron, 17(4), 270-278. https://doi.org/10.1159/000180731

Rowen, J. W., & Law, R. O. (1981). The hydroosmotic action of vasopressin and the role of hyaluronidase in the response of the rat urinary bladder. Journal of Physiology, 311, 403-417.

Sands, J. M., & Bichet, D. G. (2006). Nephrogenic diabetes insipidus. Annals of Internal Medicine, 144(3), 186-194. https://doi.org/10.7326/0003-4819-144-3-200602070-00007

Sands, J. M., & Layton, H. E. (2009). The physiology of urinary concentration: An update. Seminars in Nephrology, 29(3), 178-195. https://doi.org/10.1016/j.semnephrol.2009.03.008

Schmidt-Nielsen, K. (1964). Desert Animals: Physiological Problems of Heat and Water. Oxford University Press.

Schnermann, J., & Briggs, J. P. (2008). Tubuloglomerular feedback: Mechanistic insights from gene-manipulated mice. Kidney International, 74(4), 418-426. https://doi.org/10.1038/ki.2008.145

Simon, D. B., Karet, F. E., Hamdan, J. M., DiPietro, A., Sanjad, S. A., & Lifton, R. P. (1996). Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nature Genetics, 13(2), 183-188. https://doi.org/10.1038/ng0696-183

Statius van Eps, L. W., Pinedo-Veels, C., de Vries, G. H., & de Koning, J. (1970). Nature of concentrating defect in sickle-cell nephropathy: Microradioangiographic studies. Lancet, 295(7644), 450-452. https://doi.org/10.1016/S0140-6736(70)90836-6

Stern, R. (2003). Devising a pathway for hyaluronan catabolism: Are we there yet? Glycobiology, 13(12), 105R-115R. https://doi.org/10.1093/glycob/cwg112

Stern, R. (2004). Hyaluronan catabolism: A new metabolic pathway. European Journal of Cell Biology, 83(7), 317-325. https://doi.org/10.1078/0171-9335-00392

Stern, R., Asari, A. A., & Sugahara, K. N. (2006). Hyaluronan fragments: An information-rich system. European Journal of Cell Biology, 85(8), 699-715. https://doi.org/10.1016/j.ejcb.2006.05.009

Stridh, S., Palm, F., & Hansell, P. (2012). Renal interstitial hyaluronan: Functional aspects during normal and pathological conditions. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302(11), R1235-R1249. https://doi.org/10.1152/ajpregu.00332.2011

Tampe, D., & Zeisberg, M. (2014). Potential approaches to reverse or repair renal fibrosis. Nature Reviews Nephrology, 10(4), 226-237. https://doi.org/10.1038/nrneph.2014.14

Törrönen, K., Nikunen, K., Kärnä, R., Tammi, M., Tammi, R., & Rilla, K. (2014). Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochemistry and Cell Biology, 141(1), 17-31. https://doi.org/10.1007/s00418-013-1143-4

Torres, V. E., Chapman, A. B., Devuyst, O., Gansevoort, R. T., Grantham, J. J., Higashihara, E., Perrone, R. D., Krasa, H. B., Ouyang, J., & Czerwiec, F. S. (2012). Tolvaptan in patients with autosomal dominant polycystic kidney disease. New England Journal of Medicine, 367(25), 2407-2418. https://doi.org/10.1056/NEJMoa1205511

Verkman, A. S. (2011). Aquaporins at a glance. Journal of Cell Science, 124(Pt 13), 2107-2112. https://doi.org/10.1242/jcs.079467

Verney, E. B. (1947). The antidiuretic hormone and the factors which determine its release. Proceedings of the Royal Society of London. Series B, Biological Sciences, 135(878), 25-106. https://doi.org/10.1098/rspb.1947.0037

Weigel, P. H., Hascall, V. C., & Tammi, M. (1997). Hyaluronan synthases. Journal of Biological Chemistry, 272(22), 13997-14000. https://doi.org/10.1074/jbc.272.22.13997

Wirz, H., Hargitay, B., & Kuhn, W. (1951). Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helvetica Physiologica et Pharmacologica Acta, 9(2), 196-207.

Yang, B., Gillespie, A., Carlson, E. J., Bhaumik, A., Bhaumik, A., Bhaumik, A., & Bhaumik, A. (2001). Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. Journal of Biological Chemistry, 276(4), 2775-2779. https://doi.org/10.1074/jbc.M008216200

Yang, B., Zhao, D., Qian, L., & Bhaumik, A. (2006). Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. American Journal of Physiology-Renal Physiology, 291(2), F465-F472. https://doi.org/10.1152/ajprenal.00494.2005

Zeisberg, M., & Neilson, E. G. (2010). Mechanisms of tubulointerstitial fibrosis. Journal of the American Society of Nephrology, 21(11), 1819-1834. https://doi.org/10.1681/ASN.2010080793

Pedagogy and Psychology of Sport

Downloads

  • PDF

Published

2025-12-25

How to Cite

1.
GOZHENKO, Anatoliy, ZUKOW, Walery, GOZHENKO, Olena and IVANOV, Dmytro. The renal interstitial matrix as a dynamic osmolyte reservoir: synthesis of classical hyaluronidase-glycosaminoglycan theory with contemporary aquaporin biology. A Comprehensive Narrative Review. Pedagogy and Psychology of Sport. Online. 25 December 2025. Vol. 28, p. 67748. [Accessed 26 December 2025]. DOI 10.12775/PPS.2025.28.67748.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 28 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Anatoliy Gozhenko, Walery Zukow, Olena Gozhenko, Dmytro Ivanov

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 137
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

hyaluronic acid, extracellular matrix, antidiuretic hormone, aquaporins, urine concentration, renal medulla, countercurrent multiplication, osmoregulatory function of the kidneys
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop