Artificial Intelligence – Enabled Integration of Physical Fitness Monitoring and Public Fitness Promotion: Mechanisms, Opportunities, and Governance Challenges
DOI:
https://doi.org/10.12775/PPS.2025.28.67650Keywords
artificial intelligence, physical health monitoring, public health promotion, precision public health, governance challengeAbstract
As public health governance shifts from a disease-treatment paradigm toward health promotion and risk prevention, physical health monitoring has become a foundational component of population health management. In practice, however, monitoring systems remain constrained by a “monitoring-heavy, translation-light” dilemma, in which monitoring outputs fail to translate effectively into risk assessment and intervention, resulting in a structural break in the monitoring–assessment–intervention chain. Using a mechanisms–opportunities–governance challenges analytical framework, this paper synthesizes how artificial intelligence (AI) enables the integration of physical health monitoring with public health promotion and delineates the key conditions shaping its effectiveness. We argue that AI facilitates integration through multi-source health data integration and population profiling, population-level risk identification and prediction, and an intelligent feedback loop linking continuous monitoring, stratified intervention, outcome evaluation, and iterative adjustment. These mechanisms support a shift from periodic, static monitoring to stratified and dynamic population-level health promotion. At the same time, AI creates opportunities to enhance governance responsiveness, optimize public resource allocation, and strengthen evidence generation for policy design and evaluation, while also introducing governance challenges related to data privacy and ethics, algorithmic bias, health inequities, and accountability. We conclude that AI should be positioned as a tool and infrastructure within public health governance rather than an autonomous decision-maker, and that its real-world impact ultimately depends on institutional design, data governance, accountability, and human–AI collaboration.
References
1. Awofeso N. What’s new about the “new public health”? Am J Public Health. 2004;94: 705–709. doi:10.2105/ajph.94.5.705
2. First international conference on health promotion, ottawa, 21 november 1986. [cited 21 Dec 2025]. Available: https://www.who.int/teams/health-promotion/enhanced-wellbeing/first-global-conference
3. McNabb SJ, Chungong S, Ryan M, Wuhib T, Nsubuga P, Alemu W, et al. Conceptual framework of public health surveillance and action and its application in health sector reform. BMC Public Health. 2002;2: 2. doi:10.1186/1471-2458-2-2
4. Khoury MJ, Armstrong GL, Bunnell RE, Cyril J, Iademarco MF. The intersection of genomics and big data with public health: opportunities for precision public health. PLoS Med. 2020;17: e1003373. doi:10.1371/journal.pmed.1003373
5. Roberts MC, Holt KE, Del Fiol G, Baccarelli AA, Allen CG. Precision public health in the era of genomics and big data. Nat Med. 2024;30: 1865–1873. doi:10.1038/s41591-024-03098-0
6. Global strategy on digital health 2020-2025. [cited 21 Dec 2025]. Available: https://www.who.int/publications/i/item/9789240020924
7. Roberts MC, Holt KE, Del Fiol G, Baccarelli AA, Allen CG. Precision public health in the era of genomics and big data. Nat Med. 2024;30: 1865–1873. doi:10.1038/s41591-024-03098-0
8. Ethics and governance of artificial intelligence for health. [cited 21 Dec 2025]. Available: https://www.who.int/publications/i/item/9789240029200
9. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Sci (N Y NY). 2019;366: 447–453. doi:10.1126/science.aax2342
10. Principles. [cited 21 Dec 2025]. Available: https://www.who.int/data/principles
11. Glanz K, Rimer BK, Viswanath K, editors. Health behavior: theory, research, and practice. San Francisco, CA: Jossey-Bass; 2015.
12. Nutbeam D, Muscat DM. Health Promotion Glossary 2021. HEALTH Promot Int. 2021;36: 1578–1598. doi:10.1093/heapro/daaa157
13. An overview of GeoAI applications in health and healthcare | international journal of health geographics. [cited 21 Dec 2025]. Available: https://link.springer.com/article/10.1186/s12942-019-0171-2
14. Ristevski B, Chen M. Big data analytics in medicine and healthcare. J Integr Bioinform. 2018;15: 20170030. doi:10.1515/jib-2017-0030
15. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319: 1317–1318. doi:10.1001/jama.2017.18391
16. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380: 1347–1358. doi:10.1056/NEJMra1814259
17. London AJ. Artificial intelligence and black-box medical decisions: accuracy versus explainability. Hastings Cent Rep. 2019;49: 15–21. doi:10.1002/hast.973
18. Panteli D, Adib K, Buttigieg S, Goiana-da-Silva F, Ladewig K, Azzopardi-Muscat N, et al. Artificial intelligence in public health: promises, challenges, and an agenda for policy makers and public health institutions. Lancet, Public HEALTH. 2025;10: e428–e432. doi:10.1016/S2468-2667(25)00036-2
19. Bates DW, Levine D, Syrowatka A, Kuznetsova M, Craig KJT, Rui A, et al. The potential of artificial intelligence to improve patient safety: a scoping review. npj Digital Med. 2021;4: 54. doi:10.1038/s41746-021-00423-6
20. Shah ND, Steyerberg EW, Kent DM. Big data and predictive analytics: recalibrating expectations. JAMA. 2018;320: 27–28. doi:10.1001/jama.2018.5602
21. Frieden TR. A framework for public health action: the health impact pyramid. Am J Public Health. 2010;100: 590–595. doi:10.2105/AJPH.2009.185652
22. Obermeyer Z, Emanuel EJ. Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med. 2016;375: 1216–1219. doi:10.1056/NEJMp1606181
23. Fallatah DI, Adekola HA. Digital epidemiology: harnessing big data for early detection and monitoring of viral outbreaks. Infect Prev Pract. 2024;6: 100382. doi:10.1016/j.infpip.2024.100382
24. Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection--harnessing the web for public health surveillance. N Engl J Med. 2009;360: 2153–2155, 2157. doi:10.1056/NEJMp0900702
25. Mello MM, Wang CJ. Ethics and governance for digital disease surveillance. Sci (N Y NY). 2020;368: 951–954. doi:10.1126/science.abb9045
26. Glasziou P, Irwig L, Mant D. Monitoring in chronic disease: a rational approach. BMJ. 2005;330: 644–648. doi:10.1136/bmj.330.7492.644
27. Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol. 2016;183: 758–764. doi:10.1093/aje/kwv254
28. Marmot M, Bell R. Fair society, healthy lives. Public Health. 2012;126 Suppl 1: S4–S10. doi:10.1016/j.puhe.2012.05.014
29. Ioannidis JPA. Evidence-based medicine has been hijacked: a report to david sackett. J Clin Epidemiol. 2016;73: 82–86. doi:10.1016/j.jclinepi.2016.02.012
30. Frieden TR. Six components necessary for effective public health program implementation. Am J Public Health. 2014;104: 17–22. doi:10.2105/AJPH.2013.301608
31. Kroll JA, Huey J, Barocas S, Felten EW, Reidenberg JR, Robinson DG, et al. Accountable algorithms. Univ Pa Law Rev. 2017;165: 633–705.
32. The ethics of algorithms: mapping the debate - brent daniel mittelstadt, patrick allo, mariarosaria taddeo, sandra wachter, luciano floridi, 2016. [cited 21 Dec 2025]. Available: https://journals.sagepub.com/doi/10.1177/2053951716679679
33. Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: Addressing ethical challenges. PLoS Med. 2018;15: e1002689. doi:10.1371/journal.pmed.1002689
34. Floridi L, Cowls J. A unified framework of five principles for AI in society. Harvard Data Sci Rev. 2019;1. doi:10.1162/99608f92.8cd550d1
35. Read a sample: “race after technology: abolitionist tools for the new jim code.” [cited 21 Dec 2025]. Available: https://read.amazon.com/sample/1509526390?clientId=share
36. Yeung K. Algorithmic regulation: a critical interrogation. Regul Gov. 2018;12: 505–523. doi:10.1111/rego.12158
37. Greenhalgh T, Wherton J, Papoutsi C, Lynch J, Hughes G, A’Court C, et al. Beyond Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and Sustainability of Health and Care Technologies. J Med Internet Res. 2017;19: e367. doi:10.2196/jmir.8775
38. Colby JL. Just health: meeting health needs fairly. J Health Polit Policy Law. 2009;34: 839–846. doi:10.1215/03616878-2009-027
39. Grote T, Berens P. On the ethics of algorithmic decision-making in healthcare. J Med Ethics. 2020;46: 205–211. doi:10.1136/medethics-2019-105586
40. Kruk ME, Gage AD, Arsenault C, Jordan K, Leslie HH, Roder-DeWan S, et al. High-quality health systems in the sustainable development goals era: time for a revolution. Lancet, Glob HEALTH. 2018;6: e1196–e1252. doi:10.1016/S2214-109X(18)30386-3
41. Coglianese C, Lehr D. Regulating by robot: administrative decision making in the machine-learning era. Georgetown Law J. 2017. Available: https://scholarship.law.upenn.edu/faculty_scholarship/1734
42. Kareemi H, Yadav K, Price C, Bobrovitz N, Meehan A, Li H, et al. Artificial intelligence-based clinical decision support in the emergency department: a scoping review. Acad Emerg Med: Off J Soc Acad Emerg Med. 2025;32: 386–395. doi:10.1111/acem.15099
43. Lahusen C, Maggetti M, Slavkovik M. Trust, trustworthiness and AI governance. Sci Rep. 2024;14: 20752. doi:10.1038/s41598-024-71761-0
44. Peters DH, Adam T, Alonge O, Agyepong IA, Tran N. Implementation research: what it is and how to do it. BMJ (Clin Res Ed,). 2013;347: f6753. doi:10.1136/bmj.f6753
45. Braunholtz DA, Edwards SJ, Lilford RJ. Are randomized clinical trials good for us (in the short term)? Evidence for a “trial effect.” J Clin Epidemiol. 2001;54: 217–224. doi:10.1016/s0895-4356(00)00305-x
46. Reich MR. Political economy analysis for health. Bull World Health Organ. 2019;97: 514. doi:10.2471/BLT.19.238311
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Henghao Yan, Xiefang Zheng, Jiong Luo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 3
Number of citations: 0