Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Pedagogy and Psychology of Sport

Predicting Mental Health Among Adolescents with Risk Behaviors Based on Machine Learning
  • Home
  • /
  • Predicting Mental Health Among Adolescents with Risk Behaviors Based on Machine Learning
  1. Home /
  2. Archives /
  3. Vol. 28 (2025) /
  4. Health Sciences

Predicting Mental Health Among Adolescents with Risk Behaviors Based on Machine Learning

Authors

  • Yan Li Department of Psychology, Faculty of Medicine, University of Helsinki, Helsinki, Finland https://orcid.org/0000-0002-2977-4945
  • Luyan Teng College of International Education, Sichuan International Studies University https://orcid.org/0000-0001-7673-3217

DOI:

https://doi.org/10.12775/PPS.2025.28.67521

Keywords

risk behaviors, mental health, adolescents, machine learning, gender differences

Abstract

Objectives

While mental health is known to predict risk behaviors, less is understood about how specific risk behaviors contribute to mental health outcomes, particularly across genders. This study used machine learning to examine the predictive relationships between various risk behaviors and adolescent mental health, and to explore gender differences in these patterns.

Methods

We analyzed data from the nationally representative Chinese “Database of Youth Health,” including 8,670 high school students surveyed in 2020. A gradient-boosted decision tree model (XGBoost) was used to predict mental health, measured by the Symptom Checklist-90 (SCL-90), based on 22 risk behaviors. SHAP (Shapley Additive ExPlanations) values were calculated to interpret individual feature contributions.

Results

The model showed good performance (RMSE = 0.49, MAE = 0.35). Frequent dizziness during sports, lack of seat belt use, and alcohol consumption were identified as significant risk factors. Gender differences emerged: earlier age of first smoking was more strongly associated with poorer mental health among girls, while exercise frequency was a stronger protective factor for boys.

Conclusion

These findings underscore the need for gender-sensitive mental health interventions that address both physical and behavioral risk factors, and demonstrate the utility of machine learning in identifying nuanced predictors of adolescent mental health.

References

Abdolali, M., & Gillis, N. (2021). Beyond linear subspace clustering: A comparative study of nonlinear manifold clustering algorithms. Computer Science Review, 42, 100435. https://doi.org/10.1016/j.cosrev.2021.100435

Aghaabbasi, M., & Chalermpong, S. (2023). Machine learning techniques for evaluating the nonlinear link between built-environment characteristics and travel behaviors: A systematic review. Travel Behaviour and Society, 33, 100640. https://doi.org/10.1016/j.tbs.2023.100640

Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54(3), 1937–1967. https://doi.org/10.1007/s10462-020-09896-5

Botsis, A. (2003). High risk behaviours in young adults: is there a common substrate? Annals of General Hospital Psychiatry, 2(S1), S6. https://doi.org/10.1186/1475-2832-2-S1-S6

Brooks, T. L., Harris, S. K., Thrall, J. S., & Woods, E. R. (2002). Association of adolescent risk behaviors with mental health symptoms in high school students. Journal of Adolescent Health, 31(3), 240–246. https://doi.org/10.1016/S1054-139X(02)00385-3

Deng, S., Wang, F., Cai, Y., Wang, H., Wang, Z., Qian, Q., & Ding, W. (2024). Prediction and Analysis of Multiple Causes of Mental Health Problems Based on Machine Learning (pp. 150–160). https://doi.org/10.1007/978-3-031-57867-0_11

Derogatis, L. R., & Cleary, P. A. (1977). Confirmation of the dimensional structure of the scl-90: A study in construct validation. Journal of Clinical Psychology, 33(4), 981–989. https://doi.org/10.1002/1097-4679(197710)33:4<981::AID-JCLP2270330412>3.0.CO;2-0

Ekanayake, I. U., Meddage, D. P. P., & Rathnayake, U. (2022). A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP). Case Studies in Construction Materials, 16, e01059. https://doi.org/10.1016/j.cscm.2022.e01059

Halliday, A. J., Kern, M. L., & Turnbull, D. A. (2019). Can physical activity help explain the gender gap in adolescent mental health? A cross-sectional exploration. Mental Health and Physical Activity, 16, 8–18. https://doi.org/10.1016/j.mhpa.2019.02.003

Hands, B., & Parker, H. (2016). Male and Female Differences in Health Benefits Derived from Physical Activity: Implications for Exercise Prescription. Journal of Womens Health, Issues and Care, 5(4). https://doi.org/10.4172/2325-9795.1000238

Jones, A. C., Schinka, K. C., van Dulmen, M. H. M., Bossarte, R. M., & Swahn, M. H. (2011). Changes in Loneliness during Middle Childhood Predict Risk for Adolescent Suicidality Indirectly through Mental Health Problems. Journal of Clinical Child & Adolescent Psychology, 40(6), 818–824. https://doi.org/10.1080/15374416.2011.614585

Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 593. https://doi.org/10.1001/archpsyc.62.6.593

Miranda-Mendizabal, A., Castellví, P., Parés-Badell, O., Alayo, I., Almenara, J., Alonso, I., Blasco, M. J., Cebrià, A., Gabilondo, A., Gili, M., Lagares, C., Piqueras, J. A., Rodríguez-Jiménez, T., Rodríguez-Marín, J., Roca, M., Soto-Sanz, V., Vilagut, G., & Alonso, J. (2019). Gender differences in suicidal behavior in adolescents and young adults: systematic review and meta-analysis of longitudinal studies. International Journal of Public Health, 64(2), 265–283. https://doi.org/10.1007/s00038-018-1196-1

Patton, G. C., Sawyer, S. M., Santelli, J. S., Ross, D. A., Afifi, R., Allen, N. B., Arora, M., Azzopardi, P., Baldwin, W., Bonell, C., Kakuma, R., Kennedy, E., Mahon, J., McGovern, T., Mokdad, A. H., Patel, V., Petroni, S., Reavley, N., Taiwo, K., … Viner, R. M. (2016). Our future: a Lancet commission on adolescent health and wellbeing. The Lancet, 387(10036), 2423–2478. https://doi.org/10.1016/S0140-6736(16)00579-1

Rosenfield, S., & Mouzon, D. (2013). Gender and Mental Health (pp. 277–296). https://doi.org/10.1007/978-94-007-4276-5_14

Shengfa, Z., Wei, L., Xiaosheng, D., Wenxin, C., Xiangren, Y., Wei, Z., Yue, Z., & Yuanzhi, Z. (2022). A Dataset on the Status Quo of Health and Health-Related Behaviors of Chinese Youth: A Longitudinal Large-Scale Survey in the Secondary School Students of Shandong Province. Chinese Medical Sciences Journal, 37(1), 60. https://doi.org/10.24920/004051

Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28(1), 78–106. https://doi.org/10.1016/j.dr.2007.08.002

Sullivan, C. J., Childs, K. K., & O’Connell, D. (2010). Adolescent Risk Behavior Subgroups: An Empirical Assessment. Journal of Youth and Adolescence, 39(5), 541–562. https://doi.org/10.1007/s10964-009-9445-5

Thompson, A. B., Tebes, J. K., & McKee, S. A. (2015). Gender differences in age of smoking initiation and its association with health. Addiction Research & Theory, 23(5), 413–420. https://doi.org/10.3109/16066359.2015.1022159

Pedagogy and Psychology of Sport

Downloads

  • PDF

Published

2025-12-19

How to Cite

1.
LI, Yan and TENG, Luyan. Predicting Mental Health Among Adolescents with Risk Behaviors Based on Machine Learning. Pedagogy and Psychology of Sport. Online. 19 December 2025. Vol. 28, p. 67521. [Accessed 20 December 2025]. DOI 10.12775/PPS.2025.28.67521.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 28 (2025)

Section

Health Sciences

License

Copyright (c) 2025 Yan Li, Luyan Teng

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 3
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

risk behaviors, mental health, adolescents, machine learning, gender differences
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop