The Mechanistic Pathways Linking Exercise to Neuroprotection and Mental Health: Construction and Elaboration of an Integrative Theoretical Model
DOI:
https://doi.org/10.12775/PPS.2025.28.67244Keywords
Neuroprotection, Mental health, Neural plasticity, Neural circuits, Theoretical modelAbstract
Objective: This study proposes the Exercise–Neuroprotection–Mental Health (ENM) model, an integrative framework explaining how exercise enhances mental health through multilevel neurobiological mechanisms.
Methods: Drawing on evidence related to exercise-induced neurotrophic factors, myokines, neuroplasticity, and emotion-related neural circuits, we synthesized current findings and developed mechanistic inferences following the pathway from physiological activation to molecular signaling, neuroplastic changes, neural-circuit modulation, and mental-health outcomes.
Results: The ENM model suggests that exercise triggers peripheral activation leading to increased BDNF, irisin, and anti-inflammatory and antioxidant responses. These molecular changes enhance synaptic plasticity, neurogenesis, and network efficiency in the hippocampus and prefrontal cortex. At the circuit level, improved functioning of the PFC–amygdala emotion-regulation pathway, the hippocampus–HPA axis, and the VTA–NAc reward system contributes to better emotional stability, stress resilience, and motivation. The model yields testable hypotheses regarding the mediating role of BDNF, the involvement of the PFC–amygdala circuit in anxiolytic effects, the role of the VTA–NAc pathway in antidepressant effects, and myokines and inflammation as intervention targets.
Conclusion: The ENM model offers a coherent framework linking exercise to neuroprotection and mental-health improvement and provides theoretical guidance for targeted exercise prescriptions and future neuroimaging, biomarker, and clinical validation studies.
References
1. Vigo D, Thornicroft G, Atun R. Estimating the true global burden of mental illness. Lancet, Psychiatry. 2016;3: 171–178. doi:10.1016/S2215-0366(15)00505-2
2. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481: 463–468. doi:10.1038/nature10777
3. Castrén E, Monteggia LM. Brain-derived neurotrophic factor signaling in depression and antidepressant action. Biol Psychiatry. 2021;90: 128–136. doi:10.1016/j.biopsych.2021.05.008
4. Luo Z, Chen J, Dai Y, So K-F, Zhang L. Treadmill exercise modulates the medial prefrontal-amygdala neural circuit to improve the resilience against chronic restraint stress. Commun Biol. 2023;6: 624. doi:10.1038/s42003-023-05003-w
5. Jodeiri Farshbaf M, Alviña K. Multiple roles in neuroprotection for the exercise derived myokine irisin. Front Aging Neurosci. 2021;13: 649929. doi:10.3389/fnagi.2021.649929
6. Voss MW, Nagamatsu LS, Liu-Ambrose T, Kramer AF. Exercise, brain, and cognition across the life span. J Appl Physiol (Bethesda Md,: 1985). 2011;111: 1505–1513. doi:10.1152/japplphysiol.00210.2011
7. Matta Mello Portugal E, Cevada T, Sobral Monteiro-Junior R, Teixeira Guimarães T, da Cruz Rubini E, Lattari E, et al. Neuroscience of exercise: from neurobiology mechanisms to mental health. Neuropsychobiology. 2013;68: 1–14. doi:10.1159/000350946
8. Dishman RK, Berthoud H-R, Booth FW, Cotman CW, Edgerton VR, Fleshner MR, et al. Neurobiology of exercise. Obes (Silver Spring Md,). 2006;14: 345–356. doi:10.1038/oby.2006.46
9. Pourteymour S, Majhi RK, Norheim FA, Drevon CA. Exercise delays brain ageing through muscle-brain crosstalk. Cell Proliferation. 2025;58: e70026. doi:10.1111/cpr.70026
10. Querido JS, Sheel AW. Regulation of cerebral blood flow during exercise. Sports Med (Auckl NZ). 2007;37: 765–782. doi:10.2165/00007256-200737090-00002
11. Abad S, Fole A, del Olmo N, Pubill D, Pallàs M, Junyent F, et al. MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density. Psychopharmacology (Berl). 2014;231: 863–874. doi:10.1007/s00213-013-3304-5
12. Metsios GS, Moe RH, Kitas GD. Exercise and inflammation. Best Pract Res, Clin Rheumatol. 2020;34: 101504. doi:10.1016/j.berh.2020.101504
13. Pingitore A, Lima GPP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutr (Burbank Angeles Cty Calif,). 2015;31: 916–922. doi:10.1016/j.nut.2015.02.005
14. van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96: 13427–13431. doi:10.1073/pnas.96.23.13427
15. Surget A, Belzung C. Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Mol Psychiatry. 2022;27: 403–421. doi:10.1038/s41380-021-01136-8
16. Dadkhah M, Saadat M, Ghorbanpour AM, Moradikor N. Experimental and clinical evidence of physical exercise on BDNF and cognitive function: a comprehensive review from molecular basis to therapy. Brain Behav Immun Integr. 2023;3: 100017. doi:10.1016/j.bbii.2023.100017
17. Xiao W, Yang Y, Bai L, Yang P, Li R, Yang D, et al. Exercise-induced irisin ameliorates cognitive impairment following chronic cerebral hypoperfusion by suppressing neuroinflammation and hippocampal neuronal apoptosis. J Neuroinflammation. 2025;22: 168. doi:10.1186/s12974-025-03493-5
18. Scheffer D da L, Latini A. Exercise-induced immune system response: anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2020;1866: 165823. doi:10.1016/j.bbadis.2020.165823
19. Lu B. BDNF and activity-dependent synaptic modulation. Learn Mem (Cold Spring Harb NY). 2003;10: 86–98. doi:10.1101/lm.54603
20. Ben-Zeev T, Shoenfeld Y, Hoffman JR. The effect of exercise on neurogenesis in the brain. Isr Med Assoc J: IMAJ. 2022;24: 533–538.
21. Seo D-Y, Heo J-W, Ko JR, Kwak H-B. Exercise and neuroinflammation in health and disease. Int Neurourol J. 2019;23: S82-92. doi:10.5213/inj.1938214.107
22. Zhang A, Yang C, Li G, Wang Y, Liu P, Liu Z, et al. Functional connectivity of the prefrontal cortex and amygdala is related to depression status in major depressive disorder. J Affect Disord. 2020;274: 897–902. doi:10.1016/j.jad.2020.05.053
23. Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature. 2018;559: 98–102. doi:10.1038/s41586-018-0262-4
24. Mackin DM, Kotov R, Perlman G, Nelson BD, Goldstein BL, Hajcak G, et al. Reward processing and future life stress: Stress generation pathway to depression. J Abnorm Psychol. 2019;128: 305–314. doi:10.1037/abn0000427
25. Park H, Poo M. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14: 7–23. doi:10.1038/nrn3379
26. Lee H, Lim Y. Can myokines serve as supporters of muscle–brain connectivity in obesity and type 2 diabetes? Potential of exercise and nutrition interventions. Nutrients. 2025;17: 3615. doi:10.3390/nu17223615
27. Zhang Y, Zhang X, Lin S. Irisin: a bridge between exercise and neurological diseases. Heliyon. 2022;8: e12352. doi:10.1016/j.heliyon.2022.e12352
28. Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: double trouble. Neuron. 2020;107: 234–256. doi:10.1016/j.neuron.2020.06.002
29. Russell G, Lightman S. The human stress response. Nat Rev, Endocrinol. 2019;15: 525–534. doi:10.1038/s41574-019-0228-0
30. Allen WE. Brain mapping, from molecules to networks. Science. 2020;370: 925–925. doi:10.1126/science.abf1711
31. Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol. 2014;220: 223–250. doi:10.1007/978-3-642-45106-5_9
32. Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2022;47: 260–275. doi:10.1038/s41386-021-01109-z
33. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18: 649–659. doi:10.1016/j.cmet.2013.09.008
34. Baptista P, Andrade JP. Adult hippocampal neurogenesis: regulation and possible functional and clinical correlates. Front Neuroanat. 2018;12: 44. doi:10.3389/fnana.2018.00044
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Henghao Yan, Rui Du, Jiong Luo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 3
Number of citations: 0