The Extracellular Matrix of the Renal Medulla as a Dynamic Reservoir of Osmolytes
DOI:
https://doi.org/10.12775/PPS.2025.27.67029Keywords
hyaluronic acid, extracellular matrix, antidiuretic hormone, aquaporins, urine concentration, renal medulla, countercurrent multiplication, osmoregulatory function of the kidneysAbstract
The ability of mammalian kidneys to concentrate urine to 1200-1400 mOsm/kg is traditionally explained by the classical countercurrent multiplication theory; however, this model leaves at least three fundamental questions unanswered. First, the medullary osmotic gradient maintains remarkable stability even under high blood flow in the vasa recta, which theoretically should lead to massive washout of osmolytes; mathematical models demonstrate that countercurrent exchange alone cannot explain this resilience. Second, experimental studies from the 1960s-1980s revealed pleiotropic effects of antidiuretic hormone that extend far beyond simple regulation of aquaporin-2 at the epithelial level. Third, phenotypic variability in patients with similar V2 receptor or AQP2 mutations suggests the existence of additional modulating mechanisms whose nature remains enigmatic.
In this review, we integrate classical theory with contemporary data on the role of the medullary interstitial matrix, particularly hyaluronic acid, as a dynamic reservoir of osmolytes. Literature analysis confirms that HA concentration in the medulla is 3-5 times higher than in the cortex, and that this polyanionic macromolecule can immobilize Na⁺ and urea through electrostatic interactions. Particularly compelling are the classical experiments of Rowen and Law (1981), which demonstrated that immunoneutralization of renal hyaluronidase with specific antiserum suppresses the concentrating response to ADH by 60-70%, leaving approximately one-third of the effect intact. This observation elegantly aligns with a dual-action model of ADH: the epithelial mechanism via V2R→cAMP→PKA→AQP2 provides rapid increase in water permeability, while the matrix mechanism via cAMP→hyaluronidase→HA depolymerization releases immobilized osmolytes, increasing the effective interstitial osmolarity. This multilevel integration not only explains the stability of the osmotic gradient under variable hemodynamic conditions but also opens new horizons for understanding the pathophysiology of urine concentrating defects and developing personalized therapeutic strategies.
References
Agre, P., Preston, G. M., Smith, B. L., Jung, J. S., Raina, S., Moon, C., Guggino, W. B., & Nielsen, S. (1993). Aquaporin CHIP: The archetypal molecular water channel. American Journal of Physiology-Renal Physiology, 265(4), F463-F476. https://doi.org/10.1152/ajprenal.1993.265.4.F463
Arthus, M. F., Lonergan, M., Crumley, M. J., Naumova, A. K., Morin, D., De Marco, L. A., Kaplan, B. S., Antonarakis, S. E., Rosenthal, W., Arthus, M. F., Hendy, G. N., & Bichet, D. G. (2000). Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. Journal of the American Society of Nephrology, 11(6), 1044-1054. https://doi.org/10.1681/ASN.V1161044
Baethge, C., Goldbeck-Wood, S., & Mertens, S. (2019). SANRA—a scale for the quality assessment of narrative review articles. Research Integrity and Peer Review, 4, Article 5. https://doi.org/10.1186/s41073-019-0064-8
Bichet, D. G. (2006). Hereditary polyuric disorders: New concepts and differential diagnosis. Seminars in Nephrology, 26(3), 224-233. https://doi.org/10.1016/j.semnephrol.2006.03.001
Brown, D. (2003). The ins and outs of aquaporin-2 trafficking. American Journal of Physiology-Renal Physiology, 284(5), F893-F901. https://doi.org/10.1152/ajprenal.00387.2002
Cobbin, L. B., & Dicker, S. E. (1962). Antidiuretic activity of hyaluronidase. The Journal of Physiology, 162(2), 245-261.
Comper, W. D., & Laurent, T. C. (1978). Physiological function of connective tissue polysaccharides. Physiological Reviews, 58(1), 255-315. https://doi.org/10.1152/physrev.1978.58.1.255
Cowman, M. K., Lee, H. G., Schwertfeger, K. L., McCarthy, J. B., & Turley, E. A. (2015). The content and size of hyaluronan in biological fluids and tissues. Frontiers in Immunology, 6, Article 261. https://doi.org/10.3389/fimmu.2015.00261
Eddy, A. A. (1996). Molecular insights into renal interstitial fibrosis. Journal of the American Society of Nephrology, 7(12), 2495-2508. https://doi.org/10.1681/ASN.V7122495
Estévez, R., Boettger, T., Stein, V., Birkenhäger, R., Otto, E., Hildebrandt, F., & Jentsch, T. J. (2001). Barttin is a Cl⁻ channel beta-subunit crucial for renal Cl⁻ reabsorption and inner ear K⁺ secretion. Nature, 414(6863), 558-561. https://doi.org/10.1038/35107099
Fujiwara, T. M., & Bichet, D. G. (2005). Molecular biology of hereditary diabetes insipidus. Journal of the American Society of Nephrology, 16(10), 2836-2846. https://doi.org/10.1681/ASN.2005040371
Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F., & Sasaki, S. (1993). Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature, 361(6412), 549-552. https://doi.org/10.1038/361549a0
Garantziotis, S., & Savani, R. C. (2019). Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biology, 78-79, 1-10. https://doi.org/10.1016/j.matbio.2019.02.002
Guyatt, G. H., Oxman, A. D., Schünemann, H. J., Tugwell, P., & Knottnerus, A. (2011). GRADE guidelines: A new series of articles in the Journal of Clinical Epidemiology. Journal of Clinical Epidemiology, 64(4), 380-382. https://doi.org/10.1016/j.jclinepi.2010.09.011
Hebert, S. C., Mount, D. B., & Gamba, G. (2004). Molecular physiology of cation-coupled Cl⁻ cotransport: The SLC12 family. Pflügers Archiv - European Journal of Physiology, 447(5), 580-593. https://doi.org/10.1007/s00424-003-1066-3
Hoffert, J. D., Pisitkun, T., Wang, G., Shen, R. F., & Knepper, M. A. (2006). Quantitative phosphoproteomics of vasopressin-sensitive renal cells: Regulation of aquaporin-2 phosphorylation at two sites. Proceedings of the National Academy of Sciences, 103(18), 7159-7164. https://doi.org/10.1073/pnas.0600895103
Hooijmans, C. R., Rovers, M. M., de Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE's risk of bias tool for animal studies. BMC Medical Research Methodology, 14, Article 43. https://doi.org/10.1186/1471-2288-14-43
Kaissling, B., & Le Hir, M. (2008). The renal cortical interstitium: Morphological and functional aspects. Histochemistry and Cell Biology, 130(2), 247-262. https://doi.org/10.1007/s00418-008-0452-5
Knepper, M. A., & Nielsen, S. (2004). Peter Agre, 2003 Nobel Prize winner in chemistry. Journal of the American Society of Nephrology, 15(4), 1093-1095. https://doi.org/10.1097/01.ASN.0000118814.47663.7D
Kortenoeven, M. L., & Fenton, R. A. (2014). Renal aquaporins and water balance disorders. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(5), 1533-1549. https://doi.org/10.1016/j.bbagen.2013.12.002
Kuhn, W., & Ryffel, K. (1942). Herstellung konzentrierter Lösungen aus verdünnten durch blosse Membranwirkung. Ein Modellversuch zur Funktion der Niere [Production of concentrated solutions from dilute ones by membrane action alone. A model experiment on kidney function]. Hoppe-Seyler's Zeitschrift für Physiologische Chemie, 276, 145-178.
Laurent, T. C. (1964). The interaction between polysaccharides and other macromolecules. 9. The exclusion of molecules from hyaluronic acid gels and solutions. Biochemical Journal, 93(1), 106-112. https://doi.org/10.1042/bj0930106
Laurent, T. C., & Fraser, J. R. (1992). Hyaluronan. The FASEB Journal, 6(7), 2397-2404. https://doi.org/10.1096/fasebj.6.7.1563592
Law, R. O., & Rowen, T. W. (1981). Changes in renal medullary glycosaminoglycan content during antidiuretic hormone-induced antidiuresis in the rat. The Journal of Physiology, 310, 391-404.
Layton, A. T., & Layton, H. E. (2005). A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results. American Journal of Physiology-Renal Physiology, 289(4), F827-F839. https://doi.org/10.1152/ajprenal.00346.2003
Layton, A. T., Vallon, V., & Edwards, A. (2015). Modeling oxygen consumption in the proximal tubule: Effects of NHE and SGLT2 inhibition. American Journal of Physiology-Renal Physiology, 308(12), F1343-F1357. https://doi.org/10.1152/ajprenal.00007.2015
Lemley, K. V., & Kriz, W. (1991). Anatomy of the renal interstitium. Kidney International, 39(3), 370-381. https://doi.org/10.1038/ki.1991.49
Lindeman, R. D., Van Buren, H. C., & Raisz, L. G. (1960). Osmolar renal concentrating ability in healthy young men and hospitalized patients without renal disease. New England Journal of Medicine, 262, 1306-1309.
Maroudas, A. (1968). Physicochemical properties of cartilage in the light of ion exchange theory. Biophysical Journal, 8(5), 575-595. https://doi.org/10.1016/S0006-3495(68)86509-9
Mutsaers, S. E., Birnie, K., Lansley, S., Herrick, S. E., Lim, C. B., & Prêle, C. M. (2015). Mesothelial cells in tissue repair and fibrosis. Frontiers in Pharmacology, 6, Article 113. https://doi.org/10.3389/fphar.2015.00113
Nielsen, S., Chou, C. L., Marples, D., Christensen, E. I., Kishore, B. K., & Knepper, M. A. (1995). Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proceedings of the National Academy of Sciences, 92(4), 1013-1017. https://doi.org/10.1073/pnas.92.4.1013
Nielsen, S., DiGiovanni, S. R., Christensen, E. I., Knepper, M. A., & Harris, H. W. (1993). Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proceedings of the National Academy of Sciences, 90(24), 11663-11667. https://doi.org/10.1073/pnas.90.24.11663
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, Article n71. https://doi.org/10.1136/bmj.n71
Pallone, T. L., Edwards, A., Ma, T., Silldorff, E. P., & Verkman, A. S. (2000). Requirement of aquaporin-1 for NaCl-driven water transport across descending vasa recta. Journal of Clinical Investigation, 105(2), 215-222. https://doi.org/10.1172/JCI8214
Pallone, T. L., Zhang, Z., & Rhinehart, K. (2003). Physiology of the renal medullary microcirculation. American Journal of Physiology-Renal Physiology, 284(2), F253-F266. https://doi.org/10.1152/ajprenal.00304.2002
Preston, G. M., Carroll, T. P., Guggino, W. B., & Agre, P. (1992). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 256(5055), 385-387. https://doi.org/10.1126/science.256.5055.385
Reed, R. K., Wiig, H., & Rodt, S. A. (1989). Interstitial fluid pressure, colloid osmotic pressure, and fluid balance in rat dermis during volume expansion. American Journal of Physiology-Heart and Circulatory Physiology, 256(4), H1009-H1018.
Robben, J. H., Knoers, N. V., & Deen, P. M. (2006). Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. American Journal of Physiology-Renal Physiology, 291(2), F257-F270. https://doi.org/10.1152/ajprenal.00491.2005
Rowen, T. W., & Law, R. O. (1981). The effect of antiserum to renal hyaluronidase on vasopressin-induced antidiuresis in the rat. The Journal of Physiology, 319, 9P-10P.
Sands, J. M., & Layton, H. E. (2009). The physiology of urinary concentration: An update. Seminars in Nephrology, 29(3), 178-195. https://doi.org/10.1016/j.semnephrol.2009.03.008
Schuh, C. D., Polesel, M., Platonova, E., Haenni, D., Gassama, A., Tokonami, N., Roth, I., Kölling, M., Gawinecka, J., Caprara, C., Frey, F. J., Rohner, N., Devuyst, O., Vogt, B., & Gassmann, M. (2018). Combined structural and functional imaging of the kidney reveals major axial differences in proximal tubule endocytosis. Journal of the American Society of Nephrology, 29(11), 2696-2712. https://doi.org/10.1681/ASN.2018050522
Shea, B. J., Reeves, B. C., Wells, G., Thuku, M., Hamel, C., Moran, J., Moher, D., Tugwell, P., Welch, V., Kristjansson, E., & Henry, D. A. (2017). AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ, 358, Article j4008. https://doi.org/10.1136/bmj.j4008
Stern, R., & Jedrzejas, M. J. (2006). Hyaluronidases: Their genomics, structures, and mechanisms of action. Chemical Reviews, 106(3), 818-839. https://doi.org/10.1021/cr050247k
Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H. Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., ... Higgins, J. P. T. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, 366, Article l4898. https://doi.org/10.1136/bmj.l4898
Tammi, M. I., Day, A. J., & Turley, E. A. (2002). Hyaluronan and homeostasis: A balancing act. Journal of Biological Chemistry, 277(7), 4581-4584. https://doi.org/10.1074/jbc.R100037200
Wirz, H., Hargitay, B., & Kuhn, W. (1951). Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie [Localization of the concentrating process in the kidney by direct cryoscopy]. Helvetica Physiologica et Pharmacologica Acta, 9(2), 196-207.
Yasui, M., Zelenin, S. M., Celsi, G., & Aperia, A. (1997). Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. American Journal of Physiology-Renal Physiology, 272(4), F443-F450. https://doi.org/10.1152/ajprenal.1997.272.4.F443
Zhai, X. Y., Thomsen, J. S., Birn, H., Kristoffersen, I. B., Andreasen, A., & Christensen, E. I. (2006). Three-dimensional reconstruction of the mouse nephron. Journal of the American Society of Nephrology, 17(1), 77-88. https://doi.org/10.1681/ASN.2005080796
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anatoliy Gozhenko, Walery Zukow, Olena Gozhenko, Dmytro Ivanov

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 137
Number of citations: 0