Water, Proteins, and Volume Regulation: Molecular Mechanisms of Hydration and Oncotic Balance
DOI:
https://doi.org/10.12775/PPS.2025.26.66523Keywords
protein hydration, urea, oncotic pressure, volume regulation, hypoproteinemia, aquaporins, Na⁺/K⁺-ATPase, Starling balance, vasopressin, water homeostasisAbstract
Background: Water is the fundamental basis of life and an absolute prerequisite for the existence of proteins and all biological structures. During evolution, an extraordinarily complex multilevel system of water homeostasis has developed in the human body, with diverse executive mechanisms at each level of biological organization.
Objective: Comprehensive analysis of molecular, cellular, and systemic mechanisms of water-protein interactions in the context of human physiology, with particular emphasis on the role of urea as a regulator of protein hydration, the function of plasma proteins in maintaining oncotic pressure, and the pathophysiology of hepatic hypoproteinemia.
Methods: Narrative literature review with systematic search in PubMed, Scopus, and Web of Science databases for the period 1980-2025. Over 80 scientific sources were analyzed, including original research, systematic reviews, and clinical studies. Special attention was paid to the works of Professor A.I. Gozhenko and co-authors on water-salt homeostasis.
Results: Protein hydration layers consist of several zones with varying degrees of ordering (first layer 0.25-0.35 nm, second layer 0.35-0.6 nm), with the rotational relaxation time of water molecules in the first layer being 2-5 times longer than in bulk water. Urea demonstrates a concentration-dependent dichotomy: at physiological concentrations (5-500 mM) it functions as a compatible osmolyte, while at high concentrations (6-8 M) it acts as a denaturant. Albumin, comprising 60% of plasma protein mass, generates 75-80% of oncotic pressure (25-28 mmHg) due to the Donnan effect and nonlinear dependence π = RT·C·(1+kC). Aquaporins transport up to 3×10⁹ water molecules/s, while Na⁺/K⁺-ATPase creates ionic gradients by exporting 3 Na⁺ and importing 2 K⁺ per ATP molecule. Vasopressin, via V2 receptors, activates the cAMP-PKA cascade, leading to AQP2 phosphorylation at Ser256 and its translocation to the apical membrane. Hepatic hypoalbuminemia (<25-30 g/L) disrupts Starling balance, activating RAAS and ADH, which paradoxically exacerbates edema.
Conclusions: Water homeostasis is maintained through hierarchical integration of molecular (protein hydration, urea role), cellular (aquaporins, Na⁺/K⁺-ATPase), tissue (Starling balance, oncotic pressure), and systemic (hypothalamic-pituitary-renal axis) mechanisms. Disruption at any level leads to a cascade of pathological changes, emphasizing the need for an integrative approach to the diagnosis and treatment of water balance disorders.
References
Acher, R. (1996). Molecular evolution of fish neurohypophysial hormones: neutral and selective evolutionary mechanisms. General and Comparative Endocrinology, 102(2), 157-172.
Angeli, P., Bernardi, M., Villanueva, C., Francoz, C., Mookerjee, R. P., Trebicka, J., Krag, A., Laleman, W., & Gines, P. (2018). EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. Journal of Hepatology, 69(2), 406–460. https://doi.org/10.1016/j.jhep.2018.03.024
Badiuk, N. S., Bilas, V. R., Gozhenko, A. I., Gozhenko, O. A., Hrytsak, M. V., Hrytsan, I. I., Klishch, I. M., Muszkieta, R., Popovych, I. L., Ruzhylo, S. V., Yanchij, R. I., & Zukow, W. (2022). Mineral waters, metabolism, neuro-endocrine-immune complex. Toruń. 252 p.
Ball, P. (2008). Water as an active constituent in cell biology. Chemical Reviews, 108(1), 74–108. https://doi.org/10.1021/cr068037a
Bellissent-Funel, M.-C., Hassanali, A., Havenith, M., Henchman, R., Pohl, P., Sterpone, F., van der Spoel, D., Xu, Y., & Garcia, A. E. (2016). Water determines the structure and dynamics of proteins. Chemical Reviews, 116(13), 7673–7697. https://doi.org/10.1021/acs.chemrev.5b00664
Bennion, B. J., & Daggett, V. (2003). The molecular basis for the chemical denaturation of proteins by urea. Proceedings of the National Academy of Sciences, 100(9), 5142–5147. https://doi.org/10.1073/pnas.0930122100
Borgnia, M., Nielsen, S., Engel, A., & Agre, P. (1999). Cellular and molecular biology of the aquaporin water channels. Annual Review of Biochemistry, 68(1), 425–458. https://doi.org/10.1146/annurev.biochem.68.1.425
Burg, M. B., & Ferraris, J. D. (2008). Intracellular organic osmolytes: Function and regulation. Journal of Biological Chemistry, 283(12), 7309–7313. https://doi.org/10.1074/jbc.R700042200
Chandler, D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature, 437(7059), 640–647. https://doi.org/10.1038/nature04162
Chaplin, M. (2006). Do we underestimate the importance of water in cell biology? Nature Reviews Molecular Cell Biology, 7(11), 861–866. https://doi.org/10.1038/nrm2021
Courtenay, E. S., Capp, M. W., Anderson, C. F., & Record, M. T. (2000). Vapor pressure osmometry studies of osmolyte-protein interactions: Implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro. Biochemistry, 39(15), 4455–4471. https://doi.org/10.1021/bi992887l
Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29(31), 7133–7155. https://doi.org/10.1021/bi00483a001
England, J. L., & Haran, G. (2011). Role of solvation effects in protein denaturation: From thermodynamics to single molecules and back. Annual Review of Physical Chemistry, 62(1), 257–277. https://doi.org/10.1146/annurev-physchem-032210-103531
Fenton, R. A., & Knepper, M. A. (2024). Physiological roles and regulation of transport proteins in the collecting duct. Journal of Physiology, 602(1), 1–3. https://doi.org/10.1113/jp286369
Fersht, A. (1999). Structure and mechanism in protein science: A guide to enzyme catalysis and protein folding. W. H. Freeman.
Garcia-Martinez, R., & Andreola, F. (2018). Albumin: Pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology, 58(5), 1836–1846. https://doi.org/10.1002/hep.26338
Ginès, P., Cárdenas, A., Arroyo, V., & Rodés, J. (2004). Management of cirrhosis and ascites. New England Journal of Medicine, 350(16), 1646–1654. https://doi.org/10.1056/NEJMra035021
Gozhenko, A. I., & Zhigalina-Gritsenyuk, M. S. (2013). Role of salt receptor cavity in shaping physiological reactions of water-salt homeostasis. Journal of Health Sciences, 3(14), 7–16.
Gozhenko, A. I., Haminich, A., & Vityukov, O. (2024a). Clinical pathophysiology of proteinuria. Journal of Education, Health and Sport, 56, 156–169. https://doi.org/10.12775/JEHS.2024.57.017
Gozhenko, A. I., Zavidnyuk, Y. V., Sydliaruk, N. I., Mysula, I. R., Klishch, I. M., Zukow, W., Popovych, I. L., & Korda, M. M. (2018). Features of metabolic reactions to various water-salt loads in female rats. Journal of Education, Health and Sport, 8(4), 496–518. https://apcz.umk.pl/JEHS/article/view/5550
Gozhenko, A., Badiuk, N., Nasibullin, B., Gushcha, S., Gozhenko, O., Vasyuk, V., Kutsenko, Y., Muszkieta, R., & Zukow, W. (2020). The role of macronutrients in the implementation of the corrective effect of low-mineralized water in experimental metabolic syndrome. Roczniki Państwowego Zakładu Higieny, 71(4), 423-430. https://doi.org/10.32394/rpzh.2020.0136
Gozhenko, A., Zukow, W., Gozhenko, O., & Kvasnytska, O. (2025a). Pathophysiological Significance of Urea in Glomerular Filtration Dysregulation in Hepatorenal Syndrome: An Integrative Review. Journal of Education, Health and Sport, 84, 64982. https://doi.org/10.12775/JEHS.2025.84.64982
Gozhenko, A., Zukow, W., Ivanov, D., Filipets, N., & Gozhenko, O. (2025b). Pathophysiological aspects of the interaction between endogenous natriuretic factors and digoxin-like substances as different functional systems of central nervous system regulation: a systematic review. Pedagogy and Psychology of Sport, 24, 64876. https://doi.org/10.12775/PPS.2025.24.64876
Guyton, A. C., & Hall, J. E. (2015). Textbook of medical physiology (13th ed.). Elsevier.
Halle, B. (2004). Protein hydration dynamics in solution: A critical survey. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1448), 1207–1224. https://doi.org/10.1098/rstb.2004.1499
Halle, B., & Nilsson, L. (2009). Does the dynamic Stokes shift report on slow protein hydration dynamics? Journal of Physical Chemistry B, 113(24), 8210–8213. https://doi.org/10.1021/jp9027589
Hallows, K. R., & Knauf, P. A. (2020). Principles of cell volume regulation. In Seldin and Giebisch's The Kidney: Physiology and Pathophysiology (5th ed., pp. 245–278). Academic Press.
Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical Reviews, 102(12), 4501–4524. https://doi.org/10.1021/cr000033x
Hoffmann, E. K., & Dunham, P. B. (1995). Membrane mechanisms and intracellular signalling in cell volume regulation. International Review of Cytology, 161, 173–262. https://doi.org/10.1016/S0074-7696(08)62498-5
Ivanova, L. N., & Goryunova, T. E. (1981). Mechanism of the renal hyaluronate-hydrolase activation in response to ADH. In Vasopressin: Cellular and Integrative Functions (pp. 385–388). Elsevier. https://doi.org/10.1016/B978-0-08-026824-8.50083-7
Ivanova, L. N., Goryunova, T. E., Nikiforovskaya, L. F., & Tishchenko, N. I. (1982). Hyaluronate hydrolase activity and glycosaminoglycans in the Brattleboro rat kidney. Annals of the New York Academy of Sciences, 394(1), 787–790. https://doi.org/10.1111/j.1749-6632.1982.tb37462.x
Kay, A. R. (2017). How cells can control their size by pumping ions. Frontiers in Cell and Developmental Biology, 5, 41. https://doi.org/10.3389/fcell.2017.00041
King, L. S., & Agre, P. (1996). Pathophysiology of the aquaporin water channels. Annual Review of Physiology, 58(1), 619–648. https://doi.org/10.1146/annurev.ph.58.030196.003155
Klibanov, A. M. (2001). Improving enzymes by using them in organic solvents. Nature, 409(6817), 241–246. https://doi.org/10.1038/35051719
Kodner, C. (2009). Nephrotic syndrome in adults: Diagnosis and management. American Family Physician, 80(10), 1129–1134.
Landis, E. M., & Pappenheimer, J. R. (1963). Exchange of substances through the capillary walls. In Handbook of Physiology: Circulation (Vol. 2, pp. 961–1034). American Physiological Society.
Layton, A. T. (2011). A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. American Journal of Physiology-Renal Physiology, 300(2), F356–F371. https://doi.org/10.1152/ajprenal.00203.2010
Levick, J. R., & Michel, C. C. (2010). Microvascular fluid exchange and the revised Starling principle. Cardiovascular Research, 87(2), 198–210. https://doi.org/10.1093/cvr/cvq062
Levy, Y., & Onuchic, J. N. (2006). Water mediation in protein folding and molecular recognition. Annual Review of Biophysics and Biomolecular Structure, 35, 389–415. https://doi.org/10.1146/annurev.biophys.35.040405.102134
Moman, R. N., Gupta, N., & Varacallo, M. (2023). Physiology, albumin. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK459198/
Mom, R., Mocquet, V., Auguin, D., & Réty, S. (2024). Aquaporin modulation by cations, a review. Current Issues in Molecular Biology, 46(8), 7955–7975. https://doi.org/10.3390/cimb46080470
Mondal, S., Mukherjee, S., & Bagchi, B. (2017). Protein hydration dynamics: much ado about nothing? The Journal of Physical Chemistry Letters, 8(19), 4878-4882.
Natochin, Y. V. (2021). Physiology of the kidney and human water–salt homeostasis: New problems. Human Physiology, 47(4), 448–458. https://doi.org/10.1134/S0362119721040113
Olesen, E. T., & Fenton, R. A. (2021). Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases. Nature Reviews Nephrology, 17(11), 765-781.
Rezus, Y. L., & Bakker, H. J. (2006). Effect of urea on the structural dynamics of water. Proceedings of the National Academy of Sciences, 103(49), 18417–18420. https://doi.org/10.1073/pnas.0606538103
Rondon-Berrios, H., & Berl, T. (2019). Physiology and pathophysiology of water homeostasis. In Brenner and Rector's The Kidney (10th ed., pp. 456–489). Elsevier.
Rothschild, M. A., Oratz, M., & Schreiber, S. S. (1988). Serum albumin. Hepatology, 8(2), 385–401. https://doi.org/10.1002/hep.1840080234
Rupley, J. A., & Careri, G. (1991). Protein hydration and function. Advances in Protein Chemistry, 41, 37–172. https://doi.org/10.1016/S0065-3233(08)60197-7
Sands, J. M., & Layton, H. E. (2013). The urine concentrating mechanism and urea transporters. In Seldin and Giebisch's The Kidney: Physiology and Pathophysiology (5th ed., pp. 1463–1510). Academic Press. https://doi.org/10.1016/B978-0-12-381462-3.00043-4
Schnermann, J., & Briggs, J. P. (2013). Tubuloglomerular feedback: Mechanistic insights from gene-manipulated mice. Kidney International, 74(4), 418–426. https://doi.org/10.1038/ki.2008.145
Springer, C. S., Pike, M. M., & Barbara, T. M. (2024). A futile cycle? Tissue homeostatic trans-membrane water co-transport: Kinetics, thermodynamics, metabolic consequences. bioRxiv. https://doi.org/10.1101/2024.04.17.589812
Stridh, S., Palm, F., & Hansell, P. (2012). Renal interstitial hyaluronan: Functional aspects during normal and pathological conditions. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302(11), R1235–R1249. https://doi.org/10.1152/ajpregu.00332.2011
Timasheff, S. N. (2002). Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry, 41(46), 13473–13482. https://doi.org/10.1021/bi020316e
Verkman, A. S. (2005). More than just water channels: Unexpected cellular roles of aquaporins. Journal of Cell Science, 118(15), 3225–3232. https://doi.org/10.1242/jcs.02519
Verkman, A. S. (2008). Mammalian aquaporins: Diverse physiological roles and potential clinical significance. Expert Reviews in Molecular Medicine, 10, e13. https://doi.org/10.1017/S1462399408000690
Wallqvist, A., Covell, D. G., & Thirumalai, D. (1998). Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation. Journal of the American Chemical Society, 120(2), 427–428. https://doi.org/10.1021/ja972053v
Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., & Somero, G. N. (1982). Living with water stress: Evolution of osmolyte systems. Science, 217(4566), 1214–1222. https://doi.org/10.1126/science.7112124
Ye, Y., Chen, F., Huang, J., Zheng, L., Tang, Q., Long, L., Yamada, T., Tyagi, M., Sakai, V. G., O'Neill, H., Zhang, Q., Souza, N. R. D., Xiao, X., Zhao, W., Hong, L., & Liu, Z. (2024). Dynamic entity formed by protein and its hydration water. Physical Review Research, 6(3), 033316. https://doi.org/10.1103/PhysRevResearch.6.033316
Zheng, L., Zhou, B., Wu, B., Tan, Y., Huang, J., Tyagi, M., Sakai, V. G., Yamada, T., O'Neill, H., Zhang, Q., & Hong, L. (2024). Decoupling of the onset of anharmonicity between a protein and its surface water around 200 K. eLife, 13, e95665. https://doi.org/10.7554/eLife.95665
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anatoliy Gozhenko, Walery Zukow, Olena Gozhenko, Dmytro Ivanov

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 211
Number of citations: 0