Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Pedagogy and Psychology of Sport

Water, Proteins, and Volume Regulation: Molecular Mechanisms of Hydration and Oncotic Balance
  • Home
  • /
  • Water, Proteins, and Volume Regulation: Molecular Mechanisms of Hydration and Oncotic Balance
  1. Home /
  2. Archives /
  3. Vol. 26 (2025) /
  4. Medical Sciences

Water, Proteins, and Volume Regulation: Molecular Mechanisms of Hydration and Oncotic Balance

Authors

  • Anatoliy Gozhenko Ukrainian Scientific Research Institute for Medicine of Transport, Odesa, Ukraine https://orcid.org/0000-0001-7413-4173
  • Walery Zukow Nicolaus Copernicus University, Toruń, Poland https://orcid.org/0000-0002-7675-6117
  • Olena Gozhenko Ukrainian Scientific Research Institute for Medicine of Transport, Odesa, Ukraine https://orcid.org/0000-0002-4071-1304
  • Dmytro Ivanov Shupyk National Healthcare University, Kyiv, Ukraine; Pediatric Nephrology Center, Kyiv, Ukraine https://orcid.org/0000-0003-2609-0051

DOI:

https://doi.org/10.12775/PPS.2025.26.66523

Keywords

protein hydration, urea, oncotic pressure, volume regulation, hypoproteinemia, aquaporins, Na⁺/K⁺-ATPase, Starling balance, vasopressin, water homeostasis

Abstract

Background: Water is the fundamental basis of life and an absolute prerequisite for the existence of proteins and all biological structures. During evolution, an extraordinarily complex multilevel system of water homeostasis has developed in the human body, with diverse executive mechanisms at each level of biological organization.

Objective: Comprehensive analysis of molecular, cellular, and systemic mechanisms of water-protein interactions in the context of human physiology, with particular emphasis on the role of urea as a regulator of protein hydration, the function of plasma proteins in maintaining oncotic pressure, and the pathophysiology of hepatic hypoproteinemia.

Methods: Narrative literature review with systematic search in PubMed, Scopus, and Web of Science databases for the period 1980-2025. Over 80 scientific sources were analyzed, including original research, systematic reviews, and clinical studies. Special attention was paid to the works of Professor A.I. Gozhenko and co-authors on water-salt homeostasis.

Results: Protein hydration layers consist of several zones with varying degrees of ordering (first layer 0.25-0.35 nm, second layer 0.35-0.6 nm), with the rotational relaxation time of water molecules in the first layer being 2-5 times longer than in bulk water. Urea demonstrates a concentration-dependent dichotomy: at physiological concentrations (5-500 mM) it functions as a compatible osmolyte, while at high concentrations (6-8 M) it acts as a denaturant. Albumin, comprising 60% of plasma protein mass, generates 75-80% of oncotic pressure (25-28 mmHg) due to the Donnan effect and nonlinear dependence π = RT·C·(1+kC). Aquaporins transport up to 3×10⁹ water molecules/s, while Na⁺/K⁺-ATPase creates ionic gradients by exporting 3 Na⁺ and importing 2 K⁺ per ATP molecule. Vasopressin, via V2 receptors, activates the cAMP-PKA cascade, leading to AQP2 phosphorylation at Ser256 and its translocation to the apical membrane. Hepatic hypoalbuminemia (<25-30 g/L) disrupts Starling balance, activating RAAS and ADH, which paradoxically exacerbates edema.

Conclusions: Water homeostasis is maintained through hierarchical integration of molecular (protein hydration, urea role), cellular (aquaporins, Na⁺/K⁺-ATPase), tissue (Starling balance, oncotic pressure), and systemic (hypothalamic-pituitary-renal axis) mechanisms. Disruption at any level leads to a cascade of pathological changes, emphasizing the need for an integrative approach to the diagnosis and treatment of water balance disorders.

References

Acher, R. (1996). Molecular evolution of fish neurohypophysial hormones: neutral and selective evolutionary mechanisms. General and Comparative Endocrinology, 102(2), 157-172.

Angeli, P., Bernardi, M., Villanueva, C., Francoz, C., Mookerjee, R. P., Trebicka, J., Krag, A., Laleman, W., & Gines, P. (2018). EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. Journal of Hepatology, 69(2), 406–460. https://doi.org/10.1016/j.jhep.2018.03.024

Badiuk, N. S., Bilas, V. R., Gozhenko, A. I., Gozhenko, O. A., Hrytsak, M. V., Hrytsan, I. I., Klishch, I. M., Muszkieta, R., Popovych, I. L., Ruzhylo, S. V., Yanchij, R. I., & Zukow, W. (2022). Mineral waters, metabolism, neuro-endocrine-immune complex. Toruń. 252 p.

Ball, P. (2008). Water as an active constituent in cell biology. Chemical Reviews, 108(1), 74–108. https://doi.org/10.1021/cr068037a

Bellissent-Funel, M.-C., Hassanali, A., Havenith, M., Henchman, R., Pohl, P., Sterpone, F., van der Spoel, D., Xu, Y., & Garcia, A. E. (2016). Water determines the structure and dynamics of proteins. Chemical Reviews, 116(13), 7673–7697. https://doi.org/10.1021/acs.chemrev.5b00664

Bennion, B. J., & Daggett, V. (2003). The molecular basis for the chemical denaturation of proteins by urea. Proceedings of the National Academy of Sciences, 100(9), 5142–5147. https://doi.org/10.1073/pnas.0930122100

Borgnia, M., Nielsen, S., Engel, A., & Agre, P. (1999). Cellular and molecular biology of the aquaporin water channels. Annual Review of Biochemistry, 68(1), 425–458. https://doi.org/10.1146/annurev.biochem.68.1.425

Burg, M. B., & Ferraris, J. D. (2008). Intracellular organic osmolytes: Function and regulation. Journal of Biological Chemistry, 283(12), 7309–7313. https://doi.org/10.1074/jbc.R700042200

Chandler, D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature, 437(7059), 640–647. https://doi.org/10.1038/nature04162

Chaplin, M. (2006). Do we underestimate the importance of water in cell biology? Nature Reviews Molecular Cell Biology, 7(11), 861–866. https://doi.org/10.1038/nrm2021

Courtenay, E. S., Capp, M. W., Anderson, C. F., & Record, M. T. (2000). Vapor pressure osmometry studies of osmolyte-protein interactions: Implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro. Biochemistry, 39(15), 4455–4471. https://doi.org/10.1021/bi992887l

Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29(31), 7133–7155. https://doi.org/10.1021/bi00483a001

England, J. L., & Haran, G. (2011). Role of solvation effects in protein denaturation: From thermodynamics to single molecules and back. Annual Review of Physical Chemistry, 62(1), 257–277. https://doi.org/10.1146/annurev-physchem-032210-103531

Fenton, R. A., & Knepper, M. A. (2024). Physiological roles and regulation of transport proteins in the collecting duct. Journal of Physiology, 602(1), 1–3. https://doi.org/10.1113/jp286369

Fersht, A. (1999). Structure and mechanism in protein science: A guide to enzyme catalysis and protein folding. W. H. Freeman.

Garcia-Martinez, R., & Andreola, F. (2018). Albumin: Pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology, 58(5), 1836–1846. https://doi.org/10.1002/hep.26338

Ginès, P., Cárdenas, A., Arroyo, V., & Rodés, J. (2004). Management of cirrhosis and ascites. New England Journal of Medicine, 350(16), 1646–1654. https://doi.org/10.1056/NEJMra035021

Gozhenko, A. I., & Zhigalina-Gritsenyuk, M. S. (2013). Role of salt receptor cavity in shaping physiological reactions of water-salt homeostasis. Journal of Health Sciences, 3(14), 7–16.

Gozhenko, A. I., Haminich, A., & Vityukov, O. (2024a). Clinical pathophysiology of proteinuria. Journal of Education, Health and Sport, 56, 156–169. https://doi.org/10.12775/JEHS.2024.57.017

Gozhenko, A. I., Zavidnyuk, Y. V., Sydliaruk, N. I., Mysula, I. R., Klishch, I. M., Zukow, W., Popovych, I. L., & Korda, M. M. (2018). Features of metabolic reactions to various water-salt loads in female rats. Journal of Education, Health and Sport, 8(4), 496–518. https://apcz.umk.pl/JEHS/article/view/5550

Gozhenko, A., Badiuk, N., Nasibullin, B., Gushcha, S., Gozhenko, O., Vasyuk, V., Kutsenko, Y., Muszkieta, R., & Zukow, W. (2020). The role of macronutrients in the implementation of the corrective effect of low-mineralized water in experimental metabolic syndrome. Roczniki Państwowego Zakładu Higieny, 71(4), 423-430. https://doi.org/10.32394/rpzh.2020.0136

Gozhenko, A., Zukow, W., Gozhenko, O., & Kvasnytska, O. (2025a). Pathophysiological Significance of Urea in Glomerular Filtration Dysregulation in Hepatorenal Syndrome: An Integrative Review. Journal of Education, Health and Sport, 84, 64982. https://doi.org/10.12775/JEHS.2025.84.64982

Gozhenko, A., Zukow, W., Ivanov, D., Filipets, N., & Gozhenko, O. (2025b). Pathophysiological aspects of the interaction between endogenous natriuretic factors and digoxin-like substances as different functional systems of central nervous system regulation: a systematic review. Pedagogy and Psychology of Sport, 24, 64876. https://doi.org/10.12775/PPS.2025.24.64876

Guyton, A. C., & Hall, J. E. (2015). Textbook of medical physiology (13th ed.). Elsevier.

Halle, B. (2004). Protein hydration dynamics in solution: A critical survey. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1448), 1207–1224. https://doi.org/10.1098/rstb.2004.1499

Halle, B., & Nilsson, L. (2009). Does the dynamic Stokes shift report on slow protein hydration dynamics? Journal of Physical Chemistry B, 113(24), 8210–8213. https://doi.org/10.1021/jp9027589

Hallows, K. R., & Knauf, P. A. (2020). Principles of cell volume regulation. In Seldin and Giebisch's The Kidney: Physiology and Pathophysiology (5th ed., pp. 245–278). Academic Press.

Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical Reviews, 102(12), 4501–4524. https://doi.org/10.1021/cr000033x

Hoffmann, E. K., & Dunham, P. B. (1995). Membrane mechanisms and intracellular signalling in cell volume regulation. International Review of Cytology, 161, 173–262. https://doi.org/10.1016/S0074-7696(08)62498-5

Ivanova, L. N., & Goryunova, T. E. (1981). Mechanism of the renal hyaluronate-hydrolase activation in response to ADH. In Vasopressin: Cellular and Integrative Functions (pp. 385–388). Elsevier. https://doi.org/10.1016/B978-0-08-026824-8.50083-7

Ivanova, L. N., Goryunova, T. E., Nikiforovskaya, L. F., & Tishchenko, N. I. (1982). Hyaluronate hydrolase activity and glycosaminoglycans in the Brattleboro rat kidney. Annals of the New York Academy of Sciences, 394(1), 787–790. https://doi.org/10.1111/j.1749-6632.1982.tb37462.x

Kay, A. R. (2017). How cells can control their size by pumping ions. Frontiers in Cell and Developmental Biology, 5, 41. https://doi.org/10.3389/fcell.2017.00041

King, L. S., & Agre, P. (1996). Pathophysiology of the aquaporin water channels. Annual Review of Physiology, 58(1), 619–648. https://doi.org/10.1146/annurev.ph.58.030196.003155

Klibanov, A. M. (2001). Improving enzymes by using them in organic solvents. Nature, 409(6817), 241–246. https://doi.org/10.1038/35051719

Kodner, C. (2009). Nephrotic syndrome in adults: Diagnosis and management. American Family Physician, 80(10), 1129–1134.

Landis, E. M., & Pappenheimer, J. R. (1963). Exchange of substances through the capillary walls. In Handbook of Physiology: Circulation (Vol. 2, pp. 961–1034). American Physiological Society.

Layton, A. T. (2011). A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. American Journal of Physiology-Renal Physiology, 300(2), F356–F371. https://doi.org/10.1152/ajprenal.00203.2010

Levick, J. R., & Michel, C. C. (2010). Microvascular fluid exchange and the revised Starling principle. Cardiovascular Research, 87(2), 198–210. https://doi.org/10.1093/cvr/cvq062

Levy, Y., & Onuchic, J. N. (2006). Water mediation in protein folding and molecular recognition. Annual Review of Biophysics and Biomolecular Structure, 35, 389–415. https://doi.org/10.1146/annurev.biophys.35.040405.102134

Moman, R. N., Gupta, N., & Varacallo, M. (2023). Physiology, albumin. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK459198/

Mom, R., Mocquet, V., Auguin, D., & Réty, S. (2024). Aquaporin modulation by cations, a review. Current Issues in Molecular Biology, 46(8), 7955–7975. https://doi.org/10.3390/cimb46080470

Mondal, S., Mukherjee, S., & Bagchi, B. (2017). Protein hydration dynamics: much ado about nothing? The Journal of Physical Chemistry Letters, 8(19), 4878-4882.

Natochin, Y. V. (2021). Physiology of the kidney and human water–salt homeostasis: New problems. Human Physiology, 47(4), 448–458. https://doi.org/10.1134/S0362119721040113

Olesen, E. T., & Fenton, R. A. (2021). Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases. Nature Reviews Nephrology, 17(11), 765-781.

Rezus, Y. L., & Bakker, H. J. (2006). Effect of urea on the structural dynamics of water. Proceedings of the National Academy of Sciences, 103(49), 18417–18420. https://doi.org/10.1073/pnas.0606538103

Rondon-Berrios, H., & Berl, T. (2019). Physiology and pathophysiology of water homeostasis. In Brenner and Rector's The Kidney (10th ed., pp. 456–489). Elsevier.

Rothschild, M. A., Oratz, M., & Schreiber, S. S. (1988). Serum albumin. Hepatology, 8(2), 385–401. https://doi.org/10.1002/hep.1840080234

Rupley, J. A., & Careri, G. (1991). Protein hydration and function. Advances in Protein Chemistry, 41, 37–172. https://doi.org/10.1016/S0065-3233(08)60197-7

Sands, J. M., & Layton, H. E. (2013). The urine concentrating mechanism and urea transporters. In Seldin and Giebisch's The Kidney: Physiology and Pathophysiology (5th ed., pp. 1463–1510). Academic Press. https://doi.org/10.1016/B978-0-12-381462-3.00043-4

Schnermann, J., & Briggs, J. P. (2013). Tubuloglomerular feedback: Mechanistic insights from gene-manipulated mice. Kidney International, 74(4), 418–426. https://doi.org/10.1038/ki.2008.145

Springer, C. S., Pike, M. M., & Barbara, T. M. (2024). A futile cycle? Tissue homeostatic trans-membrane water co-transport: Kinetics, thermodynamics, metabolic consequences. bioRxiv. https://doi.org/10.1101/2024.04.17.589812

Stridh, S., Palm, F., & Hansell, P. (2012). Renal interstitial hyaluronan: Functional aspects during normal and pathological conditions. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302(11), R1235–R1249. https://doi.org/10.1152/ajpregu.00332.2011

Timasheff, S. N. (2002). Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry, 41(46), 13473–13482. https://doi.org/10.1021/bi020316e

Verkman, A. S. (2005). More than just water channels: Unexpected cellular roles of aquaporins. Journal of Cell Science, 118(15), 3225–3232. https://doi.org/10.1242/jcs.02519

Verkman, A. S. (2008). Mammalian aquaporins: Diverse physiological roles and potential clinical significance. Expert Reviews in Molecular Medicine, 10, e13. https://doi.org/10.1017/S1462399408000690

Wallqvist, A., Covell, D. G., & Thirumalai, D. (1998). Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation. Journal of the American Chemical Society, 120(2), 427–428. https://doi.org/10.1021/ja972053v

Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., & Somero, G. N. (1982). Living with water stress: Evolution of osmolyte systems. Science, 217(4566), 1214–1222. https://doi.org/10.1126/science.7112124

Ye, Y., Chen, F., Huang, J., Zheng, L., Tang, Q., Long, L., Yamada, T., Tyagi, M., Sakai, V. G., O'Neill, H., Zhang, Q., Souza, N. R. D., Xiao, X., Zhao, W., Hong, L., & Liu, Z. (2024). Dynamic entity formed by protein and its hydration water. Physical Review Research, 6(3), 033316. https://doi.org/10.1103/PhysRevResearch.6.033316

Zheng, L., Zhou, B., Wu, B., Tan, Y., Huang, J., Tyagi, M., Sakai, V. G., Yamada, T., O'Neill, H., Zhang, Q., & Hong, L. (2024). Decoupling of the onset of anharmonicity between a protein and its surface water around 200 K. eLife, 13, e95665. https://doi.org/10.7554/eLife.95665

Pedagogy and Psychology of Sport

Downloads

  • PDF

Published

2025-11-09

How to Cite

1.
GOZHENKO, Anatoliy, ZUKOW, Walery, GOZHENKO, Olena and IVANOV, Dmytro. Water, Proteins, and Volume Regulation: Molecular Mechanisms of Hydration and Oncotic Balance. Pedagogy and Psychology of Sport. Online. 9 November 2025. Vol. 26, p. 66523. [Accessed 31 December 2025]. DOI 10.12775/PPS.2025.26.66523.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 26 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Anatoliy Gozhenko, Walery Zukow, Olena Gozhenko, Dmytro Ivanov

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 211
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

protein hydration, urea, oncotic pressure, volume regulation, hypoproteinemia, aquaporins, Na⁺/K⁺-ATPase, Starling balance, vasopressin, water homeostasis
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop