Sexual dimorphism of some parameters in healthy control and patients with ischemic heart disease, arterial hypertension and their comorbidity
DOI:
https://doi.org/10.12775/PPS.2025.26.66353Keywords
desquamated plasma endothelial cells, lipid spectrum, blood pressure, ischemic heart disease, arterial hypertension, comorbidity IHD&AH, sexual dimorphismAbstract
Background: Cardiovascular diseases (CVD) represent the leading cause of mortality worldwide, with documented sex differences in disease incidence, presentation, and outcomes. However, the extent of sexual dimorphism in underlying pathophysiological mechanisms remains incompletely characterized.
Objective: To conduct a comprehensive mathematical-statistical analysis of sex differences in cardiovascular, metabolic, endothelial, hematological, and renal parameters in patients with established cardiovascular disease.
Methods: This cross-sectional study included 162 patients with documented cardiovascular disease (91 women, 71 men) comprising patients with isolated ischemic heart disease (IHD), isolated arterial hypertension (AH), comorbidity IHD&AH, and comorbidity Alcoholism&AH, as well as 21 healthy controls (14 women, 7 men). Twenty-eight parameters were assessed including circulating desquamated endothelial cells (CEC), lipid profile, blood pressure, glucose, renal function, and hematological indices. Statistical analyses included independent samples t-tests, Mann-Whitney U tests, discriminant analysis, and entropy calculations.
Results: Among 28 examined parameters, only 6 demonstrated statistically significant sex differences and were included in the discriminant model: body mass index (women: 28.65 ± 0.32 kg/m²; men: 27.47 ± 0.33 kg/m²; F-to-enter = 6.412, p = 0.012), leukocyte count (women: 7.06 ± 0.14 × 10⁹/L; men: 6.56 ± 0.17 × 10⁹/L; F-to-enter = 5.202, p = 0.024), metabolic syndrome index (women: 0.91 ± 0.10; men: 0.61 ± 0.09; F-to-remove = 8.50, p = 0.004), Klimov atherogenic index (women: 2.88 ± 0.11; men: 3.11 ± 0.14; F-to-remove = 3.87, p = 0.051), ankle-brachial index (women: 0.823 ± 0.011; men: 0.792 ± 0.018; F-to-remove = 2.96, p = 0.088), and endotheliocytogram entropy (women: 0.694 ± 0.012 bits; men: 0.668 ± 0.016 bits; F-to-remove = 1.492, p = 0.224). Discriminant analysis achieved 60.5% classification accuracy with canonical correlation r* = 0.374 (explaining 14.0% of variance; Wilks' Λ = 0.860; χ²(6) = 23.7; p = 0.0006). Circulating endothelial cells showed no sex differences in total count (women: 1934 ± 88 cells/mL; men: 1982 ± 113 cells/mL) or in distribution patterns across alteration categories.
Conclusions: Despite epidemiological evidence of sex disparities in cardiovascular disease, the underlying pathophysiology as reflected in biomarker profiles demonstrates remarkable similarity between women and men with established disease. Modest sex differences exist primarily in body composition, inflammatory activation, and integrated metabolic indices, but substantial overlap between sexes (39.5% misclassification rate) emphasizes the importance of individualized rather than sex-stratified approaches to cardiovascular risk assessment and management. The finding that 22 of 28 parameters showed no significant sex differences, including all endothelial dysfunction markers, lipid components, blood pressure parameters, and renal function indices, suggests that once cardiovascular disease is established, pathophysiological mechanisms converge between sexes.
References
Aboyans, V., Criqui, M. H., Abraham, P., Allison, M. A., Creager, M. A., Diehm, C., ... & Treat-Jacobson, D. (2012). Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation, 126(24), 2890-2909. https://doi.org/10.1161/CIR.0b013e318276fbcb
Alberti, K. G. M. M., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., ... & Smith Jr, S. C. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 120(16), 1640-1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644
Ankle Brachial Index Collaboration. (2008). Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA, 300(2), 197-208. https://doi.org/10.1001/jama.300.2.197
Arnold, A. P., Cassis, L. A., Eghbali, M., Reue, K., & Sandberg, K. (2017). Sex hormones and sex chromosomes cause sex differences in the development of cardiovascular diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(5), 746-756. https://doi.org/10.1161/ATVBAHA.116.307301
Babelyuk VYe, Dubkowa GI, Korolyshyn TA, Holubinka SM, Dobrovolskyi YG, Zukow W, Popovych IL. Operator of Kyokushin Karate via Kates increases synaptic efficacy in the rat Hippocampus, decreases C3-θ-rhythm SPD and HRV Vagal markers, increases virtual Chakras Energy in the healthy humans as well as luminosity of distilled water in vitro. Preliminary communication. Journal of Physical Education and Sport. 2017;17(1):383-393. https://doi.org/10.7752/jpes.2017.01057
Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., ... & Virani, S. S. (2019). Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation, 139(10), e56-e528. https://doi.org/10.1161/CIR.0000000000000659
Binder, C. J., Papac-Milicevic, N., & Witztum, J. L. (2016). Innate sensing of oxidation-specific epitopes in health and disease. Nature Reviews Immunology, 16(8), 485-497. https://doi.org/10.1038/nri.2016.63
Bugiardini, R., & Bairey Merz, C. N. (2005). Angina with "normal" coronary arteries: a changing philosophy. JAMA, 293(4), 477-484. https://doi.org/10.1001/jama.293.4.477
Canto, J. G., Rogers, W. J., Goldberg, R. J., Peterson, E. D., Wenger, N. K., Vaccarino, V., ... & Zheng, Z. J. (2012). Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. JAMA, 307(8), 813-822. https://doi.org/10.1001/jama.2012.199
Carr, M. C. (2003). The emergence of the metabolic syndrome with menopause. The Journal of Clinical Endocrinology & Metabolism, 88(6), 2404-2411. https://doi.org/10.1210/jc.2003-030242
Celermajer, D. S., Sorensen, K. E., Spiegelhalter, D. J., Georgakopoulos, D., Robinson, J., & Deanfield, J. E. (1994). Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. Journal of the American College of Cardiology, 24(2), 471-476. https://doi.org/10.1016/0735-1097(94)90305-0
Cholesterol Treatment Trialists' Collaboration. (2015). Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. The Lancet, 385(9976), 1397-1405. https://doi.org/10.1016/S0140-6736(14)61368-4
Criqui, M. H., & Aboyans, V. (2015). Epidemiology of peripheral artery disease. Circulation Research, 116(9), 1509-1526. https://doi.org/10.1161/CIRCRESAHA.116.303849
Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23_suppl_1), III-27-III-32. https://doi.org/10.1161/01.CIR.0000131515.03336.f8
Derby, C. A., Crawford, S. L., Pasternak, R. C., Sowers, M., Sternfeld, B., & Matthews, K. A. (2009). Lipid changes during the menopause transition in relation to age and weight: the Study of Women's Health Across the Nation. American Journal of Epidemiology, 169(11), 1352-1361. https://doi.org/10.1093/aje/kwp043
Dobiášová, M. (2006). Atherogenic index of plasma [log (triglycerides/HDL-cholesterol)]: theoretical and practical implications. Clinical Chemistry, 50(7), 1113-1115. https://doi.org/10.1373/clinchem.2004.033175
Dobiášová, M., & Frohlich, J. (2001). The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FERHDL). Clinical Biochemistry, 34(7), 583-588. https://doi.org/10.1016/S0009-9120(01)00263-6
Dunlay, S. M., Roger, V. L., Weston, S. A., Jiang, R., & Redfield, M. M. (2017). Longitudinal changes in ejection fraction in heart failure patients with preserved and reduced ejection fraction. Circulation: Heart Failure, 5(6), 720-726. https://doi.org/10.1161/CIRCHEARTFAILURE.111.966366
Eckel, R. H., Grundy, S. M., & Zimmet, P. Z. (2005). The metabolic syndrome. The Lancet, 365(9468), 1415-1428. https://doi.org/10.1016/S0140-6736(05)66378-7
Erdbruegger, U., Haubitz, M., & Woywodt, A. (2006). Circulating endothelial cells: a novel marker of endothelial damage. Clinica Chimica Acta, 373(1-2), 17-26. https://doi.org/10.1016/j.cca.2006.05.016
Fowkes, F. G. R., Rudan, D., Rudan, I., Aboyans, V., Denenberg, J. O., McDermott, M. M., ... & Criqui, M. H. (2013). Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. The Lancet, 382(9901), 1329-1340. https://doi.org/10.1016/S0140-6736(13)61249-0
Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499-502. https://doi.org/10.1093/clinchem/18.6.499
Gimbrone Jr, M. A., & García-Cardeña, G. (2016). Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research, 118(4), 620-636. https://doi.org/10.1161/CIRCRESAHA.115.306301
Gozhenko, A., Pavlega, H., Badiuk, N., & Zukow, W. (2024). Circulating in the blood desquamated endotheliocytes at the cardiovascular diseases. Preliminary communication. Quality in Sport, 19, 51571. https://doi.org/10.12775/QS.2024.19.51571
Gozhenko, A., Pavlega, H., Badiuk, N., & Zukow, W. (2025a). Features of circulating in the blood desquamated endotheliocytes at the patients with hypertonic disease accompanied by alcoholism. Journal of Education, Health and Sport, 83, 63633. https://doi.org/10.12775/JEHS.2025.83.63633
Gozhenko, A., Pavlega, H., Gozhenko, O., & Zukow, W. (2025b). Features of circulating in the blood desquamated endotheliocytes at the patients with ischemic heart disease and combined with hypertonic disease. Pedagogy and Psychology of Sport, 24, 65637. https://doi.org/10.12775/PPS.2025.24.65637
Gozhenko, A., Pavlega, H., & Zukow, W. (2025c). Features of circulating in the blood desquamated endotheliocytes at the patients with ischemic heart disease and hypertonic disease as well as their comorbidity. Pedagogy and Psychology of Sport, 25, 66268. https://doi.org/10.12775/PPS.2025.25.66268
Grundy, S. M., Stone, N. J., Bailey, A. L., Beam, C., Birtcher, K. K., Blumenthal, R. S., ... & Yeboah, J. (2019). 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 139(25), e1082-e1143. https://doi.org/10.1161/CIR.0000000000000625
Gurka, M. J., Lilly, C. L., Oliver, M. N., & DeBoer, M. D. (2012). An examination of sex and racial/ethnic differences in the metabolic syndrome among adults: a confirmatory factor analysis and a resulting continuous severity score. Metabolism, 63(2), 218-225. https://doi.org/10.1016/j.metabol.2013.10.006
Hiller, R. (1987). Enzymatic determination of HDL cholesterol. Clinical Chemistry, 33, 895-898.
Hladovec, J., Prerovsky, I., Stanek, V., & Fabian, J. (1978). Circulating endothelial cells in acute myocardial infarction and angina pectoris. Klinische Wochenschrift, 56(20), 1033-1036. https://doi.org/10.1007/BF01477495
Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444(7121), 860-867. https://doi.org/10.1038/nature05485
Iorga, A., Cunningham, C. M., Moazeni, S., Ruffenach, G., Umar, S., & Eghbali, M. (2017). The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biology of Sex Differences, 8(1), 33. https://doi.org/10.1186/s13293-017-0152-8
Isomaa, B., Almgren, P., Tuomi, T., Forsén, B., Lahti, K., Nissén, M., ... & Groop, L. (2001). Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care, 24(4), 683-689. https://doi.org/10.2337/diacare.24.4.683
Ji, H., Kim, A., Ebinger, J. E., Niiranen, T. J., Claggett, B. L., Bairey Merz, C. N., & Cheng, S. (2020). Sex differences in blood pressure trajectories over the life course. JAMA Cardiology, 5(3), 255-262. https://doi.org/10.1001/jamacardio.2019.5306
Klein, S. L., & Flanagan, K. L. (2016). Sex differences in immune responses. Nature Reviews Immunology, 16(10), 626-638. https://doi.org/10.1038/nri.2016.90
Klimov, A. N., & Nikulcheva, N. G. (1995). Lipids, lipoproteins and atherosclerosis. St. Petersburg: Piter Press. [In Russian]
Kloner, R. A., Carson III, C., Dobs, A., Kopecky, S., & Mohler III, E. R. (2016). Testosterone and cardiovascular disease. Journal of the American College of Cardiology, 67(5), 545-557. https://doi.org/10.1016/j.jacc.2015.12.005
Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., ... & Lewis, E. F. (2019). Atherosclerosis. Nature Reviews Disease Primers, 5(1), 56. https://doi.org/10.1038/s41572-019-0106-z
Maas, A. H., & Appelman, Y. E. (2010). Gender differences in coronary heart disease. Netherlands Heart Journal, 18(12), 598-602. https://doi.org/10.1007/s12471-010-0841-y
Madjid, M., Awan, I., Willerson, J. T., & Casscells, S. W. (2004). Leukocyte count and coronary heart disease: implications for risk assessment. Journal of the American College of Cardiology, 44(10), 1945-1956. https://doi.org/10.1016/j.jacc.2004.07.056
Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Sciences of India, 2(1), 49-55.
Melloni, C., Berger, J. S., Wang, T. Y., Gunes, F., Stebbins, A., Pieper, K. S., ... & Newby, L. K. (2010). Representation of women in randomized clinical trials of cardiovascular disease prevention. Circulation: Cardiovascular Quality and Outcomes, 3(2), 135-142. https://doi.org/10.1161/CIRCOUTCOMES.110.868307
Mendelsohn, M. E., & Karas, R. H. (2005). Molecular and cellular basis of cardiovascular gender differences. Science, 308(5728), 1583-1587. https://doi.org/10.1126/science.1112062
Millán, J., Pintó, X., Muñoz, A., Zúñiga, M., Rubiés-Prat, J., Pallardo, L. F., ... & Pedro-Botet, J. (2009). Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vascular Health and Risk Management, 5, 757-765. https://doi.org/10.2147/VHRM.S6269
Miller, V. M., & Duckles, S. P. (2008). Vascular actions of estrogens: functional implications. Pharmacological Reviews, 60(2), 210-241. https://doi.org/10.1124/pr.107.08002
Mills, K. T., Bundy, J. D., Kelly, T. N., Reed, J. E., Kearney, P. M., Reynolds, K., ... & He, J. (2016). Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation, 134(6), 441-450. https://doi.org/10.1161/CIRCULATIONAHA.115.018912
Moran, L. J., Misso, M. L., Wild, R. A., & Norman, R. J. (2010). Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Human Reproduction Update, 16(4), 347-363. https://doi.org/10.1093/humupd/dmq001
Mosca, L., Barrett-Connor, E., & Wenger, N. K. (2011). Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation, 124(19), 2145-2154. https://doi.org/10.1161/CIRCULATIONAHA.110.968792
Mottillo, S., Filion, K. B., Genest, J., Joseph, L., Pilote, L., Poirier, P., ... & Eisenberg, M. J. (2010). The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. Journal of the American College of Cardiology, 56(14), 1113-1132. https://doi.org/10.1016/j.jacc.2010.05.034
Muka, T., Oliver-Williams, C., Kunutsor, S., Laven, J. S., Fauser, B. C., Chowdhury, R., ... & Franco, O. H. (2016). Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: a systematic review and meta-analysis. JAMA Cardiology, 1(7), 767-776. https://doi.org/10.1001/jamacardio.2016.2415
Ngo, S. T., Steyn, F. J., & McCombe, P. A. (2014). Gender differences in autoimmune disease. Frontiers in Neuroendocrinology, 35(3), 347-369. https://doi.org/10.1016/j.yfrne.2014.04.004
Novella, S., Dantas, A. P., Segarra, G., Medina, P., & Hermenegildo, C. (2012). Vascular aging in women: is estrogen the fountain of youth? Frontiers in Physiology, 3, 165. https://doi.org/10.3389/fphys.2012.00165
Ong, P., Athanasiadis, A., Hill, S., Vogelsberg, H., Voehringer, M., & Sechtem, U. (2012). Coronary artery spasm as a frequent cause of acute coronary syndrome: the CASPAR (Coronary Artery Spasm in Patients With Acute Coronary Syndrome) study. Journal of the American College of Cardiology, 60(11), 959-965. https://doi.org/10.1016/j.jacc.2012.04.038
Palmer, B. F., & Clegg, D. J. (2015). The sexual dimorphism of obesity. Molecular and Cellular Endocrinology, 402, 113-119. https://doi.org/10.1016/j.mce.2014.11.029
Poirier, P., Giles, T. D., Bray, G. A., Hong, Y., Stern, J. S., Pi-Sunyer, F. X., & Eckel, R. H. (2006). Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation, 113(6), 898-918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016
Reckelhoff, J. F. (2001). Gender differences in the regulation of blood pressure. Hypertension, 37(5), 1199-1208. https://doi.org/10.1161/01.HYP.37.5.1199
Regitz-Zagrosek, V. (2012). Sex and gender differences in health: Science & Society Series on Sex and Science. EMBO Reports, 13(7), 596-603. https://doi.org/10.1038/embor.2012.87
Regitz-Zagrosek, V., & Kararigas, G. (2017). Mechanistic pathways of sex differences in cardiovascular disease. Physiological Reviews, 97(1), 1-37. https://doi.org/10.1152/physrev.00021.2015
Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., ... & Glynn, R. J. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. New England Journal of Medicine, 377(12), 1119-1131. https://doi.org/10.1056/NEJMoa1707914
Rossouw, J. E., Anderson, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., ... & Ockene, J. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA, 288(3), 321-333. https://doi.org/10.1001/jama.288.3.321
Rutter, M. K., Meigs, J. B., Sullivan, L. M., D'Agostino Sr, R. B., & Wilson, P. W. (2013). C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. Circulation, 110(4), 380-385. https://doi.org/10.1161/01.CIR.0000136581.59584.0E
Sattar, N. (2013). Gender aspects in type 2 diabetes mellitus and cardiometabolic risk. Best Practice & Research Clinical Endocrinology & Metabolism, 27(4), 501-507. https://doi.org/10.1016/j.beem.2013.05.006
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Sharma, A. M., Pischon, T., Hardt, S., Kunz, I., & Luft, F. C. (2001). Hypothesis: beta-adrenergic receptor blockers and weight gain: a systematic analysis. Hypertension, 37(2), 250-254. https://doi.org/10.1161/01.HYP.37.2.250
Shores, M. M., Smith, N. L., Forsberg, C. W., Anawalt, B. D., & Matsumoto, A. M. (2012). Testosterone treatment and mortality in men with low testosterone levels. The Journal of Clinical Endocrinology & Metabolism, 97(6), 2050-2058. https://doi.org/10.1210/jc.2011-2591
Straub, R. H. (2007). The complex role of estrogens in inflammation. Endocrine Reviews, 28(5), 521-574. https://doi.org/10.1210/er.2007-0001
Taddei, S., Virdis, A., Ghiadoni, L., Mattei, P., Sudano, I., Bernini, G., ... & Salvetti, A. (1996). Menopause is associated with endothelial dysfunction in women. Hypertension, 28(4), 576-582. https://doi.org/10.1161/01.HYP.28.4.576
Tukiainen, T., Villani, A. C., Yen, A., Rivas, M. A., Marshall, J. L., Satija, R., ... & MacArthur, D. G. (2017). Landscape of X chromosome inactivation across human tissues. Nature, 550(7675), 244-248. https://doi.org/10.1038/nature24265
Vaccarino, V., Parsons, L., Every, N. R., Barron, H. V., & Krumholz, H. M. (2009). Sex-based differences in early mortality after myocardial infarction. New England Journal of Medicine, 341(4), 217-225. https://doi.org/10.1056/NEJM199907223410401
Wang, X., Magkos, F., & Mittendorfer, B. (2011). Sex differences in lipid and lipoprotein metabolism: it's not just about sex hormones. The Journal of Clinical Endocrinology & Metabolism, 96(4), 885-893. https://doi.org/10.1210/jc.2010-2061
Wenger, N. K. (2003). Coronary heart disease: the female heart is vulnerable. Progress in Cardiovascular Diseases, 46(3), 199-229. https://doi.org/10.1016/S0033-0620(03)00129-3
World Health Organization. (2021). Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Woywodt, A., Streiber, F., de Groot, K., Regelsberger, H., Haller, H., & Haubitz, M. (2006). Circulating endothelial cells as markers for ANCA-associated small-vessel vasculitis. The Lancet, 361(9353), 206-210. https://doi.org/10.1016/S0140-6736(03)12269-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hanna Pavlega, Olena Gozhenko, Anatoliy Gozhenko, Walery Zukow

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 86
Number of citations: 0