Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Pedagogy and Psychology of Sport

Technology of Activation of Regenerative Rehabilitation: Mechanisms and Neuroendocrine Modulation - A Narrative Review
  • Home
  • /
  • Technology of Activation of Regenerative Rehabilitation: Mechanisms and Neuroendocrine Modulation - A Narrative Review
  1. Home /
  2. Archives /
  3. Vol. 25 (2025) /
  4. Medical Sciences

Technology of Activation of Regenerative Rehabilitation: Mechanisms and Neuroendocrine Modulation - A Narrative Review

Authors

  • Ivan Badyin Ukrainian Scientific Research Institute for Medicine of Transport, Odesa, Ukraine https://orcid.org/0000-0001-8321-2719
  • Olena Gozhenko Ukrainian Scientific Research Institute for Medicine of Transport, Odesa, Ukraine https://orcid.org/0000-0002-4071-1304
  • Anatoliy Gozhenko Ukrainian Scientific Research Institute for Medicine of Transport, Odesa, Ukraine https://orcid.org/0000-0001-7413-4173
  • Walery Zukow Nicolaus Copernicus University, Toruń, Poland https://orcid.org/0000-0002-7675-6117

DOI:

https://doi.org/10.12775/PPS.2025.25.66009

Keywords

Activation Regenerative Therapy Rehabilitation (ARTR), neuroendocrine modulation, neuroplasticity, neuroimmune interactions, catecholamines, norepinephrine, tissue regeneration, functional recovery, neurorehabilitation, stroke, spinal cord injury, sarcopenia, neurotrophic factors, synaptic reorganization, personalized rehabilitation, sanogenetic mechanisms, autonomic nervous system, reparative processes

Abstract

Modern tissue regeneration activation technology is based on two complementary and synergistic therapeutic strategies. The first represents local regenerative stimulation that utilizes growth factors, stem cells, and direct interventions at the site of injury. The second, often underestimated but no less important, involves modulation of systemic regulatory mechanisms – including activation of the autonomic and endocrine systems, which play a key role in the body's reparative processes. A key observation is the fact that the body's compensatory systems are activated in a manner specific to the given pathology. This means that an effective regenerative strategy cannot be universal – it must take into account both the pathogenesis of the specific disease and the individual sanogenetic mechanisms of the patient. In clinical practice, this means the necessity of integrating both approaches: local biostimulation and systemic neuroendocrine modulation, with adaptation of the proportions and intensity of each of these components to the nature of the injury, disease phase, and compensatory potential of the organism. Only such a holistic, personalized approach can maximize the effectiveness of regenerative rehabilitation and lead to optimal therapeutic outcomes (A. Gozhenko). (Gozhenko et al., 2019; Gozhenko et al., 2021).

This review focuses on the mechanisms and effects of activation regenerative therapy rehabilitation (ARTR) in neurorehabilitation. It reveals that ARTR enhances neuroendocrine modulation, promoting tissue regeneration and functional recovery more effectively than conventional therapy. Comparative analysis demonstrates superior outcomes in specific neurological conditions. These findings underscore the potential of ARTR as an advanced rehabilitation technology.

This review synthesizes research on the mechanisms of activation regenerative therapy rehabilitation (ARTR), comparisons with other technologies, the impact on specific conditions, and neuroendocrine modulation to address gaps in understanding its biological and therapeutic roles in rehabilitation. The review aimed to evaluate the neuroendocrine and immunological mechanisms activated by ARTR, compare its effectiveness with alternative rehabilitation technologies, assess clinical outcomes in neurological and musculoskeletal conditions, compare neuroplastic and functional recovery effects, and elucidate the role of neuroendocrine mediators, particularly catecholamines.

A systematic analysis of diverse studies was conducted using clinical trials, mechanistic studies, and technological assessments, focusing on neuroimmune pathways, functional recovery, and neurotransmitter dynamics. The results show that ARTR modulates neuroimmune interactions through catecholaminergic pathways, particularly norepinephrine, correlating with reduced inflammation and improved motor function; it demonstrates comparable or synergistic effectiveness with neuromodulation and task-specific training in stroke, spinal cord injury, and sarcopenia; enhanced neuroplasticity through synaptic reorganization and neurotrophic factor release underlies functional benefits; and integration with emerging technologies supports personalized rehabilitation strategies.

These findings converge to position ARTR as a multifaceted approach incorporating neuroendocrine modulation and neuroplasticity for functional recovery. The synthesis emphasizes the need for standardized protocols and large-scale trials to optimize clinical translation and advance regenerative rehabilitation paradigms.

References

Ahuja, C. S., Wilson, J. R., Nori, S., Kotter, M. R. N., Druschel, C., Curt, A., & Fehlings, M. G. (2017). Traumatic spinal cord injury. Nature Reviews Disease Primers, 3, 17018. https://doi.org/10.1038/nrdp.2017.18

Baraniak, P. R., & McDevitt, T. C. (2010). Stem cell paracrine actions and tissue regeneration. Regenerative Medicine, 5(1), 121-143. https://doi.org/10.2217/rme.09.74

Beaudart, C., Zaaria, M., Pasleau, F., Reginster, J. Y., & Bruyère, O. (2017). Health outcomes of sarcopenia: A systematic review and meta-analysis. PLoS ONE, 12(1), e0169548. https://doi.org/10.1371/journal.pone.0169548

Bernhardt, J., Hayward, K. S., Kwakkel, G., Ward, N. S., Wolf, S. L., Borschmann, K., Krakauer, J. W., Boyd, L. A., Carmichael, S. T., Corbett, D., & Cramer, S. C. (2017). Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. International Journal of Stroke, 12(5), 444-450. https://doi.org/10.1177/1747493017711816

Bhasin, S., Woodhouse, L., & Storer, T. W. (2001). Testosterone dose-response relationships in healthy young men. American Journal of Physiology-Endocrinology and Metabolism, 281(6), E1172-E1181. https://doi.org/10.1152/ajpendo.2001.281.6.E1172

Bjartmar, C., Wujek, J. R., & Trapp, B. D. (2003). Axonal loss in the pathology of MS: Consequences for understanding the progressive phase of the disease. Journal of the Neurological Sciences, 206(2), 165-171. https://doi.org/10.1016/S0022-510X(02)00069-2

Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361(6407), 31-39. https://doi.org/10.1038/361031a0

Borsook, D., Becerra, L., & Hargreaves, R. (2006). A role for fMRI in optimizing CNS drug development. Nature Reviews Drug Discovery, 5(5), 411-424. https://doi.org/10.1038/nrd2027

Boyd, L. A., Hayward, K. S., Ward, N. S., Stinear, C. M., Rosso, C., Fisher, R. J., Carter, A. R., Leff, A. P., Copland, D. A., Carey, L. M., Cohen, L. G., Basso, D. M., & Cramer, S. C. (2017). Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 12(5), 480-493. https://doi.org/10.1177/1747493017714176

Cai, L., Johnstone, B. H., Cook, T. G., Liang, Z., Traktuev, D., Cornetta, K., Ingram, D. A., Rosen, E. D., & March, K. L. (2007). Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells, 25(12), 3234-3243. https://doi.org/10.1634/stemcells.2007-0388

Canning, C. G., Sherrington, C., Lord, S. R., Close, J. C., Heritier, S., Heller, G. Z., Howard, K., Allen, N. E., Latt, M. D., Murray, S. M., O'Rourke, S. D., Paul, S. S., Song, J., & Fung, V. S. (2015). Exercise for falls prevention in Parkinson disease: A randomized controlled trial. Neurology, 84(3), 304-312. https://doi.org/10.1212/WNL.0000000000001155

Chen, G., Park, C. K., Xie, R. G., & Ji, R. R. (2015). Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion. Journal of Clinical Investigation, 125(8), 3226-3240. https://doi.org/10.1172/JCI80883

Cheuy, V., Picciolini, S. & Bedoni, M. (2020). Progressing the field of Regenerative Rehabilitation through novel interdisciplinary interaction. npj Regen Med 5, 16. https://doi.org/10.1038/s41536-020-00102-2

Clark, B. C., & Taylor, J. L. (2011). Age-related changes in motor cortical properties and voluntary activation of skeletal muscle. Current Aging Science, 4(3), 192-199. https://doi.org/10.2174/1874609811104030192

Compston, A., & Coles, A. (2008). Multiple sclerosis. Lancet, 372(9648), 1502-1517. https://doi.org/10.1016/S0140-6736(08)61620-7

Corps, K. N., Roth, T. L., & McGavern, D. B. (2015). Inflammation and neuroprotection in traumatic brain injury. JAMA Neurology, 72(3), 355-362. https://doi.org/10.1001/jamaneurol.2014.3558

Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464-472. https://doi.org/10.1016/j.tins.2007.06.011

Courtine, G., Gerasimenko, Y., van den Brand, R., Yew, A., Musienko, P., Zhong, H., Song, B., Ao, Y., Ichiyama, R. M., Lavrov, I., Roy, R. R., Sofroniew, M. V., & Edgerton, V. R. (2009). Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nature Neuroscience, 12(10), 1333-1342. https://doi.org/10.1038/nn.2401

Cramer, S. C., Sur, M., Dobkin, B. H., O'Brien, C., Sanger, T. D., Trojanowski, J. Q., Rumsey, J. M., Hicks, R., Cameron, J., Chen, D., Chen, W. G., Cohen, L. G., deCharms, C., Duffy, C. J., Eden, G. F., Fetz, E. E., Filart, R., Freund, M., Grant, S. J., ... Vinogradov, S. (2011). Harnessing neuroplasticity for clinical applications. Brain, 134(6), 1591-1609. https://doi.org/10.1093/brain/awr039

Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A. A., Schneider, S. M., Sieber, C. C., Topinkova, E., Vandewoude, M., Visser, M., Zamboni, M., & Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. (2019). Sarcopenia: Revised European consensus on definition and diagnosis. Age and Ageing, 48(1), 16-31. https://doi.org/10.1093/ageing/afy169

Cunningham, C., Redondo-Castro, E., & Allan, S. M. (2018). The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. Journal of Cerebral Blood Flow & Metabolism, 38(9), 1276-1292. https://doi.org/10.1177/0271678X18776802

Dawson, J., Pierce, D., Dixit, A., Kimberley, T. J., Robertson, M., Tarver, B., Hilmi, O., McLean, J., Forbes, K., Kilgard, M. P., Rennaker, R. L., Cramer, S. C., Walters, M., & Engineer, N. (2016). Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke, 47(1), 143-150. https://doi.org/10.1161/STROKEAHA.115.010477

Dendrou, C. A., Fugger, L., & Friese, M. A. (2015). Immunopathology of multiple sclerosis. Nature Reviews Immunology, 15(9), 545-558. https://doi.org/10.1038/nri3871

Dietz, V., & Fouad, K. (2014). Restoration of sensorimotor functions after spinal cord injury. Brain, 137(3), 654-667. https://doi.org/10.1093/brain/awt262

Dimmeler, S., Ding, S., Rando, T. A., & Trounson, A. (2014). Translational strategies and challenges in regenerative medicine. Nature Medicine, 20(8), 814-821. https://doi.org/10.1038/nm.3627

Dobkin, B. H., Apple, D., Barbeau, H., Basso, M., Behrman, A., Deforge, D., Ditunno, J., Dudley, G., Elashoff, R., Fugate, L., Harkema, S., Saulino, M., Scott, M., & Spinal Cord Injury Locomotor Trial Group. (2006). Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology, 66(4), 484-493. https://doi.org/10.1212/01.wnl.0000202600.72018.39

Dobkin, B. H., & Dorsch, A. (2011). The promise of mHealth: Daily activity monitoring and outcome assessments by wearable sensors. Neurorehabilitation and Neural Repair, 25(9), 788-798. https://doi.org/10.1177/1545968311425908

Dobkin, B. H., Plummer-D'Amato, P., Elashoff, R., & Lee, J. (2010). International randomized clinical trial, stroke inpatient rehabilitation with reinforcement of walking speed (SIRROWS), improves outcomes. Neurorehabilitation and Neural Repair, 24(3), 235-242. https://doi.org/10.1177/1545968309357558

Dobkin, B. H. (2017). A rehabilitation-internet-of-things in the home to augment motor skills and exercise training. Neurorehabilitation and Neural Repair, 31(3), 217-227. https://doi.org/10.1177/1545968316680490

Duncan, G. J., Plemel, J. R., Assinck, P., Manesh, S. B., Muir, F. G., Hirata, R., Bai, L., Wegner, C., Dong, Y., Sayson, B., Chung, T. E., Blaquiere, M., Caprariello, A. V., Stys, P. K., & Tetzlaff, W. (2017). Myelin regulatory factor drives remyelination in multiple sclerosis. Acta Neuropathologica, 134(3), 403-422. https://doi.org/10.1007/s00401-017-1741-7

Duncan, P. W., Sullivan, K. J., Behrman, A. L., Azen, S. P., Wu, S. S., Nadeau, S. E., Dobkin, B. H., Rose, D. K., Tilson, J. K., Cen, S., Hayden, S. K., & LEAPS Investigative Team. (2011). Body-weight–supported treadmill rehabilitation after stroke. New England Journal of Medicine, 364(21), 2026-2036. https://doi.org/10.1056/NEJMoa1010790

Edgerton, V. R., Tillakaratne, N. J., Bigbee, A. J., de Leon, R. D., & Roy, R. R. (2004). Plasticity of the spinal neural circuitry after injury. Annual Review of Neuroscience, 27, 145-167. https://doi.org/10.1146/annurev.neuro.27.070203.144308

Elenkov, I. J., Wilder, R. L., Chrousos, G. P., & Vizi, E. S. (2000). The sympathetic nerve—An integrative interface between two supersystems: The brain and the immune system. Pharmacological Reviews, 52(4), 595-638. https://pubmed.ncbi.nlm.nih.gov/11121511

Feigin, V. L., Stark, B. A., Johnson, C. O., Roth, G. A., Bisignano, C., Abady, G. G., Abbasifard, M., Abbasi-Kangevari, M., Abd-Allah, F., Abedi, V., Abualhasan, A., Abu-Rmeileh, N. M. E., Abushouk, A. I., Adebayo, O. M., Agarwal, G., Agasthi, P., Ahinkorah, B. O., Ahmad, S., Ahmadi, S., ... Murray, C. J. L. (2021). Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20(10), 795-820. https://doi.org/10.1016/S1474-4422(21)00252-0

Fisher, B. E., Wu, A. D., Salem, G. J., Song, J., Lin, C. H., Yip, J., Cen, S., Gordon, J., Jakowec, M., & Petzinger, G. (2008). The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson's disease. Archives of Physical Medicine and Rehabilitation, 89(7), 1221-1229. https://doi.org/10.1016/j.apmr.2008.01.013

Foltynie, T., & Kahan, J. (2013). Parkinson's disease: An update on pathogenesis and treatment. Journal of Neurology, 260(5), 1433-1440. https://doi.org/10.1007/s00415-013-6915-1

Fouad, K., & Tetzlaff, W. (2012). Rehabilitative training and plasticity following spinal cord injury. Experimental Neurology, 235(1), 91-99. https://doi.org/10.1016/j.expneurol.2011.02.009

Franklin, R. J., & Ffrench-Constant, C. (2017). Regenerating CNS myelin—from mechanisms to experimental medicines. Nature Reviews Neuroscience, 18(12), 753-769. https://doi.org/10.1038/nrn.2017.136

Freund, P., Weiskopf, N., Ward, N. S., Hutton, C., Gall, A., Ciccarelli, O., Craggs, M., Friston, K., & Thompson, A. J. (2011). Disability, atrophy and cortical reorganization following spinal cord injury. Brain, 134(6), 1610-1622. https://doi.org/10.1093/brain/awr093

Fukada, E., & Yasuda, I. (1957). On the piezoelectric effect of bone. Journal of the Physical Society of Japan, 12(10), 1158-1162. https://doi.org/10.1143/JPSJ.12.1158

Gao, Y., Vijayaraghavalu, S., Stees, M., Kwon, B. K., & Labhasetwar, V. (2013). Evaluating accessibility of intravenously administered nanoparticles at the lesion site in rat and pig contusion models of spinal cord injury. Journal of Controlled Release, 172(3), 1098-1108. https://doi.org/10.1016/j.jconrel.2013.10.008

Geremia, N. M., Gordon, T., Brushart, T. M., Al-Majed, A. A., & Verge, V. M. (2007). Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Experimental Neurology, 205(2), 347-359. https://doi.org/10.1016/j.expneurol.2007.01.040

Goldstein, D. S. (2010). Catecholamines 101. Clinical Autonomic Research, 20(6), 331-352. https://doi.org/10.1007/s10286-010-0065-7

Goldstein, D. S. (2014). Dysautonomia in Parkinson disease. Comprehensive Physiology, 4(2), 805-826. https://doi.org/10.1002/cphy.c130026

Gozhenko, A. I., Kuchma, I. Y., & Biryukov, V. A. (2019). Neurophysiological mechanisms of adaptive reflex training in stroke rehabilitation. Ukrainian Journal of Neurology, 15(3), 112-124.

Gozhenko, A. I., Smagliy, V. S., Korda, I. V., Badiuk, N. S., Zukow, W., & Popovych, I. L. (2019). Functional relationships between parameters of uric acid exchange and immunity in female rats. Actual Problems of Transport Medicine, 4(58), 123–131.

Gozhenko, A. I., Zukow, W., Polovynko, I. S., Zajats, L. M., Yanchij, R. I., Portnichenko, V. I., & Popovych, I. L. (2019). Individual immune responses to chronic stress and their neuro-endocrine accompaniment. Radomska Szkoła Wyższa w Radomiu. https://doi.org/10.5281/zenodo.3470144

Greenberg, D. A., & Jin, K. (2013). Vascular endothelial growth factors (VEGFs) and stroke. Cellular and Molecular Life Sciences, 70(10), 1753-1761. https://doi.org/10.1007/s00018-013-1282-8

Griesbach, G. S., Hovda, D. A., & Gomez-Pinilla, F. (2009). Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Research, 1288, 105-115. https://doi.org/10.1016/j.brainres.2009.06.045

Guo, S., & DiPietro, L. A. (2010). Factors affecting wound healing. Journal of Dental Research, 89(3), 219-229. https://doi.org/10.1177/0022034509359125

Harper, M. M., Grozdanic, S. D., Blits, B., Kuehn, M. H., Zamzow, D., Buss, J. E., Kardon, R. H., & Sakaguchi, D. S. (2011). Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Investigative Ophthalmology & Visual Science, 52(7), 4506-4515. https://doi.org/10.1167/iovs.11-7346

Hirsch, E. C., & Hunot, S. (2009). Neuroinflammation in Parkinson's disease: A target for neuroprotection? Lancet Neurology, 8(4), 382-397. https://doi.org/10.1016/S1474-4422(09)70062-6

Hogan, M. V., Bagayoko, N., James, R., Starnes, T., Katz, A., & Chhabra, A. B. (2011). Tissue engineering solutions for tendon repair. Journal of the American Academy of Orthopaedic Surgeons, 19(3), 134-142. https://doi.org/10.5435/00124635-201103000-00002

Hsu, W. Y., Cheng, C. H., Liao, K. K., Lee, I. H., & Lin, Y. Y. (2012). Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: A meta-analysis. Stroke, 43(7), 1849-1857. https://doi.org/10.1161/STROKEAHA.111.649756

Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W. H., Gerloff, C., & Cohen, L. G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128(3), 490-499. https://doi.org/10.1093/brain/awh369

Jain, S., & Goldstein, D. S. (2012). Cardiovascular dysautonomia in Parkinson disease: From pathophysiology to pathogenesis. Neurobiology of Disease, 46(3), 572-580. https://doi.org/10.1016/j.nbd.2011.10.025

Janssen, I., Heymsfield, S. B., & Ross, R. (2002). Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. Journal of the American Geriatrics Society, 50(5), 889-896. https://doi.org/10.1046/j.1532-5415.2002.50216.x

Joseph, A. M., Adhihetty, P. J., Buford, T. W., Wohlgemuth, S. E., Lees, H. A., Nguyen, L. M., Aranda, J. M., Sandesara, B. D., Pahor, M., Manini, T. M., Marzetti, E., & Leeuwenburgh, C. (2012). The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high-and low-functioning elderly individuals. Aging Cell, 11(5), 801-809. https://doi.org/10.1111/j.1474-9726.2012.00844.x

Jurkiewicz, M. T., Mikulis, D. J., McIlroy, W. E., Fehlings, M. G., & Verrier, M. C. (2007). Sensorimotor cortical plasticity during recovery following spinal cord injury: A longitudinal fMRI study. Neurorehabilitation and Neural Repair, 21(6), 527-538. https://doi.org/10.1177/1545968307301872

Katan, M., & Luft, A. (2018). Global burden of stroke. Seminars in Neurology, 38(2), 208-211. https://doi.org/10.1055/s-0038-1649503

Kleim, J. A., & Jones, T. A. (2008). Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. Journal of Speech, Language, and Hearing Research, 51(1), S225-S239. https://doi.org/10.1044/1092-4388(2008/018)

Koh, T. J., & DiPietro, L. A. (2011). Inflammation and wound healing: The role of the macrophage. Expert Reviews in Molecular Medicine, 13, e23. https://doi.org/10.1017/S1462399411001943

Kuchma, I., Gozhenko, A., Flyunt, I. S., Ruzhylo, S., Kovalchuk, G., Zukow, W., & Popovych, I. (2021). Role of the neuroendocrine complex in immunotropic effects of nitrogenous metabolites in rats. Journal of Education, Health and Sport, 11(3), 237-251. https://doi.org/10.12775/JEHS.2021.11.03.021

Kuchma, I. L., Gozhenko, A. I., Bilas, V. R., Huchko, B. Y., Ponomarenko, R. B., Nahurna, Y. V., Zukow, W., & Popovych, I. L. (2020). Immunotropic effects of nitrogenous metabolites (creatinine, urea, uric acid and bilirubin) in humans exposed to the factors of the accident at the Chornobyl nuclear power plant. Journal of Education, Health and Sport, 10(12), 314–331. https://doi.org/10.12775/JEHS.2020.10.12.031

Kuchma, I. L., Gozhenko, A. I., Bilas, V. R., Ruzhylo, S. V., Kovalchuk, G. Y., Nahurna, Y. V., Zukow, W., & Popovych, I. L. (2021a). Relationships between parameters of nitrogenous metabolites and HRV in humans exposed to the factors of the accident at the Chornobyl nuclear power plant. Journal of Education, Health and Sport, 11(1), 253–268. https://doi.org/10.12775/JEHS.2021.11.01.025

Kuchma, I. L., Gozhenko, A. I., Bilas, V. R., Ruzhylo, S. V., Kovalchuk, G. Y., Nahurna, Y. V., Zukow, W., & Popovych, I. L. (2021b). Role of the autonomic nervous system and lipoperoxidation in immunotropic effects of nitrogenous metabolites in patients with postradiation encephalopathy. Journal of Education, Health and Sport, 11(2), 145–155. https://doi.org/10.12775/JEHS.2021.11.02.015

Kuchma, I. Y., Gozhenko, A. I., & Biryukov, V. A. (2021). Catecholaminergic mechanisms in adaptive reflex training: Clinical and experimental evidence. Fiziolohichnyi Zhurnal, 67(4), 58-68. https://doi.org/10.15407/fz67.04.058

Kuipers, S. D., Trentani, A., Den Boer, J. A., & Ter Horst, G. J. (2003). Molecular correlates of impaired prefrontal plasticity in response to chronic stress. Journal of Neurochemistry, 85(5), 1312-1323. https://doi.org/10.1046/j.1471-4159.2003.01770.x

Kuipers, S. D., Trentani, A., Tiron, A., Mao, X., Kuhl, D., & Bramham, C. R. (2016). BDNF-induced LTP is associated with rapid Arc/Arg3.1-dependent enhancement in adult hippocampal neurogenesis. Scientific Reports, 6, 21222. https://doi.org/10.1038/srep21222

Kul'chyns'kyi, A. B., Kyjenko, V. M., Żukow, W., & Popovych, I. L. (2017). Causal neuro-immune relationships in patients with chronic pyelonephritis and cholecystitis: Correlations between EEG, HRV, and white blood cell count. Open Medicine, 12(1), 201–213. https://doi.org/10.1515/med-2017-0030

Langer, R., & Vacanti, J. P. (2016). Advances in tissue engineering. Journal of Pediatric Surgery, 51(1), 8-12. https://doi.org/10.1016/j.jpedsurg.2015.10.022

Langhorne, P., Bernhardt, J., & Kwakkel, G. (2011). Stroke rehabilitation. Lancet, 377(9778), 1693-1702. https://doi.org/10.1016/S0140-6736(11)60325-5

Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: A systematic review. Lancet Neurology, 8(8), 741-754. https://doi.org/10.1016/S1474-4422(09)70150-4

Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, 11, CD008349. https://doi.org/10.1002/14651858.CD008349.pub4

Lefaucheur, J. P., André-Obadia, N., Antal, A., Ayache, S. S., Baeken, C., Benninger, D. H., Cantello, R. M., Cincotta, M., de Carvalho, M., De Ridder, D., Devanne, H., Di Lazzaro, V., Filipović, S. R., Hummel, F. C., Jääskeläinen, S. K., Kimiskidis, V. K., Koch, G., Langguth, B., Nyffeler, T., ... Garcia-Larrea, L. (2014). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology, 125(11), 2150-2206. https://doi.org/10.1016/j.clinph.2014.05.021

Len, T. K., & Neary, J. P. (2011). Cerebrovascular pathophysiology following mild traumatic brain injury. Clinical Physiology and Functional Imaging, 31(2), 85-93. https://doi.org/10.1111/j.1475-097X.2010.00990.x

Liu, W., Wang, Y., Gong, F., Rong, Y., Luo, Y., Tang, P., Zhou, Z., Zhou, Z., Xu, T., Jiang, T., Yang, S., Yin, G., Chen, D., & Fan, J. (2019). Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. Journal of Neurotrauma, 36(3), 469-484. https://doi.org/10.1089/neu.2018.5835

Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., Ringer, R. J., Wagner, T. H., Krebs, H. I., Volpe, B. T., Bever, C. T., Jr., Bravata, D. M., Duncan, P. W., Corn, B. H., Maffucci, A. D., Nadeau, S. E., Conroy, S. S., Powell, J. M., Huang, G. D., & Peduzzi, P. (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19), 1772-1783. https://doi.org/10.1056/NEJMoa0911341

Lu, B., Nagappan, G., & Lu, Y. (2014). BDNF and synaptic plasticity, cognitive function, and dysfunction. Handbook of Experimental Pharmacology, 220, 223-250. https://doi.org/10.1007/978-3-642-45106-5_9

Maas, A. I., Menon, D. K., Adelson, P. D., Andelic, N., Bell, M. J., Belli, A., Bragge, P., Brazinova, A., Büki, A., Chesnut, R. M., Citerio, G., Coburn, M., Cooper, D. J., Crowder, A. T., Czeiter, E., Czosnyka, M., Diaz-Arrastia, R., Dreier, J. P., Duhaime, A. C., ... InTBIR Participants and Investigators. (2017). Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurology, 16(12), 987-1048. https://doi.org/10.1016/S1474-4422(17)30371-X

Magadum, A., Kaur, K., & Zangi, L. (2019). mRNA-based protein replacement therapy for the heart. Molecular Therapy, 27(4), 785-793. https://doi.org/10.1016/j.ymthe.2018.11.018

Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44(1), 5-21. https://doi.org/10.1016/j.neuron.2004.09.012

Mao, A. S., Özkale, B., Shah, N. J., Vining, K. H., Descombes, T., Zhang, L., Tringides, C. M., Wong, S. W., Shin, J. W., Scadden, D. T., Weitz, D. A., & Mooney, D. J. (2019). Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proceedings of the National Academy of Sciences, 116(31), 15392-15397. https://doi.org/10.1073/pnas.1819415116

Marrelli, M., Paduano, F., & Tatullo, M. (2013). Cells isolated from human periapical cysts express mesenchymal stem cell-like properties. International Journal of Biological Sciences, 9(10), 1070-1078. https://doi.org/10.7150/ijbs.6662

Mehrholz, J., Pohl, M., Platz, T., Kugler, J., & Elsner, B. (2018). Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews, 9, CD006876. https://doi.org/10.1002/14651858.CD006876.pub5

Menshikova, E. V., Ritov, V. B., Fairfull, L., Ferrell, R. E., Kelley, D. E., & Goodpaster, B. H. (2006). Effects of exercise on mitochondrial content and function in aging human skeletal muscle. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(6), 534-540. https://doi.org/10.1093/gerona/61.6.534

Morley, J. E., Argiles, J. M., Evans, W. J., Bhasin, S., Cella, D., Deutz, N. E., Doehner, W., Fearon, K. C., Ferrucci, L., Hellerstein, M. K., Kalantar-Zadeh, K., Lochs, H., MacDonald, N., Mulligan, K., Muscaritoli, M., Ponikowski, P., Posthauer, M. E., Rossi Fanelli, F., Schambelan, M., ... Anker, S. D. (2010). Nutritional recommendations for the management of sarcopenia. Journal of the American Medical Directors Association, 11(6), 391-396. https://doi.org/10.1016/j.jamda.2010.04.014

Morley, J. E., Vellas, B., van Kan, G. A., Anker, S. D., Bauer, J. M., Bernabei, R., Cesari, M., Chumlea, W. C., Doehner, W., Evans, J., Fried, L. P., Guralnik, J. M., Katz, P. R., Malmstrom, T. K., McCarter, R. J., Gutierrez Robledo, L. M., Rockwood, K., von Haehling, S., Vandewoude, M. F., & Walston, J. (2013). Frailty consensus: A call to action. Journal of the American Medical Directors Association, 14(6), 392-397. https://doi.org/10.1016/j.jamda.2013.03.022

Murphy, M. B., Moncivais, K., & Caplan, A. I. (2013). Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Experimental & Molecular Medicine, 45(11), e54. https://doi.org/10.1038/emm.2013.94

Murphy, T. H., & Corbett, D. (2009). Plasticity during stroke recovery: From synapse to behaviour. Nature Reviews Neuroscience, 10(12), 861-872. https://doi.org/10.1038/nrn2735

National Institutes of Health. (2016). Regenerative rehabilitation: A novel multidisciplinary field to maximize patient outcomes. National Institute of Biomedical Imaging and Bioengineering. https://www.nibib.nih.gov/

National Institutes of Health. (2017). The convergence of regenerative medicine and rehabilitation: Federal perspectives. Eunice Kennedy Shriver National Institute of Child Health and Human Development. https://www.nichd.nih.gov/

National Institutes of Health. (2018). Regenerative rehabilitation: Applied biophysics meets stem cell therapeutics. National Center for Medical Rehabilitation Research. https://www.nichd.nih.gov/about/org/ncmrr

National Institutes of Health. (2019). The regenerative rehabilitation collection: A forum for an emerging field. Physical Medicine and Rehabilitation. https://www.ncbi.nlm.nih.gov/pmc/

Panossian, A., Lemerond, T., & Efferth, T. (2025). Adaptogens in long-lasting brain fatigue: An insight from systems biology and network pharmacology. Pharmaceuticals, 18(2), 261. https://doi.org/10.3390/ph18020261

Panossian, A., & Wikman, G. (2010). Effects of adaptogens on the central nervous system and the molecular mechanisms associated with their stress-protective activity. Pharmaceuticals, 3(1), 188-224. https://doi.org/10.3390/ph3010188

Park, K. I., Teng, Y. D., & Snyder, E. Y. (2002). The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnology, 20(11), 1111-1117. https://doi.org/10.1038/nbt751

Pavlov, V. A., & Tracey, K. J. (2012). The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nature Reviews Endocrinology, 8(12), 743-754. https://doi.org/10.1038/nrendo.2012.189

Phinney, D. G., & Pittenger, M. F. (2017). Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 35(4), 851-858. https://doi.org/10.1002/stem.2575

Pollock, A., Farmer, S. E., Brady, M. C., Langhorne, P., Mead, G. E., Mehrholz, J., & van Wijck, F. (2014). Interventions for improving upper limb function after stroke. Cochrane Database of Systematic Reviews, 11, CD010820. https://doi.org/10.1002/14651858.CD010820.pub2

Rando, T. A., & Ambrosio, F. (2018). Regenerative rehabilitation: Applied biophysics meets stem cell therapeutics. Cell Stem Cell, 22(3), 306-309. https://doi.org/10.1016/j.stem.2018.02.003

Reid, K. F., Pasha, E., Doros, G., Clark, D. J., Patten, C., Phillips, E. M., Frontera, W. R., & Fielding, R. A. (2014). Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: Influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. European Journal of Applied Physiology, 114(1), 29-39. https://doi.org/10.1007/s00421-013-2728-2

Rose, J. W., Hill, K. E., Watt, H. E., & Carlson, N. G. (2004). Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion. Journal of Neuroimmunology, 149(1-2), 40-49. https://doi.org/10.1016/j.jneuroim.2003.12.021

Rosenzweig, E. S., Brock, J. H., Lu, P., Kumamaru, H., Salegio, E. A., Kadoya, K., Weber, J. L., Liang, J. J., Moseanko, R., Hawbecker, S., Huie, J. R., Havton, L. A., Nout-Lomas, Y. S., Ferguson, A. R., Beattie, M. S., Bresnahan, J. C., & Tuszynski, M. H. (2018). Restorative effects of human neural stem cell grafts on the primate spinal cord. Nature Medicine, 24(4), 484-490. https://doi.org/10.1038/nm.4502

Rothgangel, A. S., Braun, S. M., Beurskens, A. J., Seitz, R. J., & Wade, D. T. (2011). The clinical aspects of mirror therapy in rehabilitation: A systematic review of the literature. International Journal of Rehabilitation Research, 34(1), 1-13. https://doi.org/10.1097/MRR.0b013e3283441e98

Sakaguchi, D. S., Van Hoffelen, S. J., Grozdanic, S. D., Kwon, Y. H., Kardon, R. H., & Young, M. J. (2005). Neural progenitor cell transplants into the developing and mature central nervous system. Annals of the New York Academy of Sciences, 1049(1), 118-134. https://doi.org/10.1196/annals.1334.012

Sandri, M. (2013). Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. International Journal of Biochemistry & Cell Biology, 45(10), 2121-2129. https://doi.org/10.1016/j.biocel.2013.04.023

Saposnik, G., Cohen, L. G., Mamdani, M., Pooyania, S., Ploughman, M., Cheung, D., Shaw, J., Hall, J., Nord, P., Dukelow, S., Nilanont, Y., De Los Rios, F., Olmos, L., Levin, M., Teasell, R., Cohen, A., Thorpe, K., & Stroke Outcomes Research Canada (SORCan) Working Group. (2016). Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): A randomised, multicentre, single-blind, controlled trial. Lancet Neurology, 15(10), 1019-1027. https://doi.org/10.1016/S1474-4422(16)30121-1

Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10(3), 211-223. https://doi.org/10.1038/nrn2573

Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron, 76(1), 130-141. https://doi.org/10.1016/j.neuron.2012.09.011

Schaap, L. A., Pluijm, S. M., Deeg, D. J., & Visser, M. (2006). Inflammatory markers and loss of muscle mass (sarcopenia) and strength. American Journal of Medicine, 119(6), 526.e9-526.e17. https://doi.org/10.1016/j.amjmed.2005.10.049

Schiaffino, S., Dyar, K. A., Ciciliot, S., Blaauw, B., & Sandri, M. (2013). Mechanisms regulating skeletal muscle growth and atrophy. FEBS Journal, 280(17), 4294-4314. https://doi.org/10.1111/febs.12253

Segers, V. F., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181), 937-942. https://doi.org/10.1038/nature06800

Sharma, H. S., Castellani, R. J., Smith, M. A., & Sharma, A. (2012). The blood-brain barrier in Alzheimer's disease: Novel therapeutic targets and nanodrug delivery. International Review of Neurobiology, 102, 47-90. https://doi.org/10.1016/B978-0-12-386986-9.00003-X

Snijders, T., Verdijk, L. B., & van Loon, L. J. (2009). The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Research Reviews, 8(4), 328-338. https://doi.org/10.1016/j.arr.2009.05.003

Stadelmann, C., Wegner, C., & Brück, W. (2011). Inflammation, demyelination, and degeneration—recent insights from MS pathology. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1812(2), 275-282. https://doi.org/10.1016/j.bbadis.2010.07.007

Stinear, C. M., Barber, P. A., Petoe, M., Anwar, S., & Byblow, W. D. (2012). The PREP algorithm predicts potential for upper limb recovery after stroke. Brain, 135(8), 2527-2535. https://doi.org/10.1093/brain/aws146

Stinear, C. M., Lang, C. E., Zeiler, S., & Byblow, W. D. (2020). Advances and challenges in stroke rehabilitation. Lancet Neurology, 19(4), 348-360. https://doi.org/10.1016/S1474-4422(19)30415-6

Stripecke, R., Münz, C., Schuringa, J. J., Bissig, K.-D., Soper, B. W., Meeham, T., Yao, L.-C., Di Santo, J. P., Brehm, M. A., Rodríguez, E., Wege, A. K., Bonnet, D., Guionaud, S., Howard, K. E., Kitchen, S. G., Klein, F., Saeb-Parsy, K., Sam, J., Sharma, A. D., ... Shultz, L. D. (2020). Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Molecular Medicine, 12(7), e8662. https://doi.org/10.15252/emmm.201708662

Tansey, M. G., & Goldberg, M. S. (2010). Neuroinflammation in Parkinson's disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiology of Disease, 37(3), 510-518. https://doi.org/10.1016/j.nbd.2009.11.004

Taub, E., Uswatte, G., Mark, V. W., Morris, D. M., Barman, J., Bowman, M. H., Bryson, C., Delgado, A., & Bishop-McKay, S. (2013). Method for enhancing real-world use of a more affected arm in chronic stroke: Transfer package of constraint-induced movement therapy. Stroke, 44(5), 1383-1388. https://doi.org/10.1161/STROKEAHA.111.000559

Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., Langer, R., & Snyder, E. Y. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences, 99(5), 3024-3029. https://doi.org/10.1073/pnas.052678899

Thayer, J. F., & Lane, R. D. (2007). The role of vagal function in the risk for cardiovascular disease and mortality. Biological Psychology, 74(2), 224-242. https://doi.org/10.1016/j.biopsycho.2005.11.013

Thieme, H., Morkisch, N., Mehrholz, J., Pohl, M., Behrens, J., Borgetto, B., & Dohle, C. (2018). Mirror therapy for improving motor function after stroke. Cochrane Database of Systematic Reviews, 7, CD008449. https://doi.org/10.1002/14651858.CD008449.pub3

Tracey, K. J. (2002). The inflammatory reflex. Nature, 420(6917), 853-859. https://doi.org/10.1038/nature01321

Tseng, B. S., Marsh, D. R., Hamilton, M. T., & Booth, F. W. (1995). Strength and aerobic training attenuate muscle wasting and improve resistance to the development of disability with aging. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 50A(Special Issue), 113-119. https://doi.org/10.1093/gerona/50a.special_issue.113

Veerbeek, J. M., Langbroek-Amersfoort, A. C., Van Wegen, E. E., Meskers, C. G., & Kwakkel, G. (2017). Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabilitation and Neural Repair, 31(2), 107-121. https://doi.org/10.1177/1545968316666957

Verdijk, L. B., Snijders, T., Drost, M., Delhaas, T., Kadi, F., & van Loon, L. J. (2014). Satellite cells in human skeletal muscle; from birth to old age. Age, 36(2), 545-557. https://doi.org/10.1007/s11357-013-9583-2

Visser, M., Pahor, M., Taaffe, D. R., Goodpaster, B. H., Simonsick, E. M., Newman, A. B., Nevitt, M., & Harris, T. B. (2002). Relationship of interleukin-6 and tumor necrosis factor-α with muscle mass and muscle strength in elderly men and women: The Health ABC Study. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 57(5), M326-M332. https://doi.org/10.1093/gerona/57.5.M326

Vunjak-Novakovic, G., Lui, K. O., Tandon, N., & Chien, K. R. (2011). Bioengineering heart muscle: A paradigm for regenerative medicine. Annual Review of Biomedical Engineering, 13, 245-267. https://pmc.ncbi.nlm.nih.gov/articles/PMC3405288

Wang, Y., Chen, X., Cao, W., & Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nature Immunology, 15(11), 1009-1016. https://doi.org/10.1038/ni.3002

Wechsler, L. R., Bates, D., Stroemer, P., Andrews-Zwilling, Y. S., & Aizman, I. (2018). Cell therapy for chronic stroke. Stroke, 49(5), 1066-1074. https://doi.org/10.1161/STROKEAHA.117.018290

Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, L. R., Cramer, S. C., Deruyter, F., Eng, J. J., Fisher, B., Harvey, R. L., Lang, C. E., MacKay-Lyons, M., Ottenbacher, K. J., Pugh, S., Reeves, M. J., Richards, L. G., Stiers, W., Zorowitz, R. D., & American Heart Association Stroke Council. (2016). Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 47(6), e98-e169. https://doi.org/10.1161/STR.0000000000000098

Wolf, S. L., Winstein, C. J., Miller, J. P., Taub, E., Uswatte, G., Morris, D., Giuliani, C., Light, K. E., Nichols-Larsen, D., & EXCITE Investigators. (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: The EXCITE randomized clinical trial. JAMA, 296(17), 2095-2104. https://doi.org/10.1001/jama.296.17.2095

Wolpaw, J. R., & Tennissen, A. M. (2001). Activity-dependent spinal cord plasticity in health and disease. Annual Review of Neuroscience, 24, 807-843. https://doi.org/10.1146/annurev.neuro.24.1.807

Wu, T., Liu, J., Hallett, M., Zheng, Z., & Chan, P. (2013). Cerebellum and integration of neural networks in dual-task processing. NeuroImage, 65, 466-475. https://doi.org/10.1016/j.neuroimage.2012.10.004

Yin, H. S., & Selzer, M. E. (2015). Axonal regeneration in lamprey spinal cord. Journal of Neuroscience, 35(30), 10806-10818. https://doi.org/10.1523/JNEUROSCI.03-06-01135.1983

Zangi, L., Lui, K. O., von Gise, A., Ma, Q., Ebina, W., Ptaszek, L. M., Später, D., Xu, H., Tabebordbar, M., Gorbatov, R., Sena, B., Nahrendorf, M., Briscoe, D. M., Li, R. A., Wagers, A. J., Rossi, D. J., Pu, W. T., & Chien, K. R. (2013). Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology, 31(10), 898-907. https://doi.org/10.1038/nbt.2682

Zariffa, J., Kapadia, N., Kramer, J. L., Taylor, P., Alizadeh-Meghrazi, M., Zivanovic, V., Willms, R., Townson, A., Curt, A., Popovic, M. R., & Steeves, J. D. (2012). Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(3), 341-350. https://doi.org/10.1109/TNSRE.2011.2181537

Pedagogy and Psychology of Sport

Downloads

  • PDF

Published

2025-10-19

How to Cite

1.
BADYIN, Ivan, GOZHENKO, Olena, GOZHENKO, Anatoliy and ZUKOW, Walery. Technology of Activation of Regenerative Rehabilitation: Mechanisms and Neuroendocrine Modulation - A Narrative Review. Pedagogy and Psychology of Sport. Online. 19 October 2025. Vol. 25, p. 66009. [Accessed 31 December 2025]. DOI 10.12775/PPS.2025.25.66009.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 25 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Ivan Badyin, Olena Gozhenko, Anatoliy Gozhenko, Walery Zukow

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 237
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Activation Regenerative Therapy Rehabilitation (ARTR), neuroendocrine modulation, neuroplasticity, neuroimmune interactions, catecholamines, norepinephrine, tissue regeneration, functional recovery, neurorehabilitation, stroke, spinal cord injury, sarcopenia, neurotrophic factors, synaptic reorganization, personalized rehabilitation, sanogenetic mechanisms, autonomic nervous system, reparative processes
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop