Evolution of Scientific Paradigms in Understanding Water Balance
DOI:
https://doi.org/10.12775/PPS.2025.25.65921Keywords
Water balance, aquaporins, systems biology, homeostasis, nephrology, countercurrent mechanism, network biologyAbstract
Background: This review is a historical synthesis of research on the “Development of Scientific Paradigms in the Study of Water Balance: A Retrospective View and the Shaping of Current Notions.” It includes seminal work by Homer Smith, the Berliner and Bennett hypothesis of the countercurrent mechanism, mathematical models of urine concentration, quantitative nephrology, and the clearance concept. It also emphasizes the groundbreaking aquaporins, especially CHIP28/AQP1 by Peter Agre, which won him the Nobel prize in Chemistry in 2003. Structural–functional analysis by Preston et al., together with expression studies in Xenopus laevis oocytes, identify paradigmatic transformations in water homeostasis. This argument critiques traditional dualities and engages with Robertson’s challenge to the dichotomous approach in consideration of the complexities of clinical disorders such as SIADH and CSWS. It highlights the need for a holistic perspective through systems biology and a network methodology, inspired by the tenets of network biology proposed by Barabási and Oltvai and by the systemic properties of biological systems exemplified by robustness, modularity and hierarchy put forward by Kitano. These principles are analyzed in relation to water homeostasis.
Objectives: The review seeks to taxonomize the historical evolution of paradigms, evaluate foundational physiological and molecular contributions, compare quantitative nephrology models, and explore systems biology approaches to elucidate the intricacies of water homeostasis.
Methods: A systematic analysis of interdisciplinary literature was conducted, encompassing classical physiology, molecular biology, mathematical modeling, and network theory.
Results: Key findings elucidate the pivotal role of Homer Smith's clearance concept and the countercurrent mechanism in establishing the foundations of quantitative renal physiology; the transformative impact of aquaporin discovery alongside structural-functional characterization on the molecular comprehension of water transport; and the significant advancements achieved through mathematical and systems biology models that integrate signaling pathways and cellular dynamics to encapsulate regulatory complexity. Furthermore, a critical reassessment of traditional binary models is warranted in the context of clinical syndromes such as SIADH and CSWS, accentuating the necessity for integrative frameworks.
Conclusions: These findings converge to underscore the evolution from reductionist to holistic paradigms, accentuating emergent properties and network robustness in water homeostasis. This synthesis highlights the essential need for multi-scale systems-level approaches to bridge molecular mechanisms with clinical phenotypes, thereby informing future research and therapeutic strategies.
References
Acher, R. (2002). Water homeostasis in the living: Molecular organization, osmoregulatory reflexes,, and evolution. Annales D'Endocrinologie, 63(3), 197-218.
Agre, P., & Nielsen, S. (1996). The aquaporin family of water channels in the kidney. Nephrologie, 17(7), 409-415.
Andronati, S. A., Antonovich, V. P., Bartik, P., Badiuk, N. S., & Gozhenko, A. I. (2005). Актуальні проблеми транспортної медицини [Current problems of transport medicine]. Odessa: Ukrainian Scientific Research Institute for Medicine of Transport.
Bradley, S. E. (1987). Clearance concept in renal physiology. https://doi.org/10.1007/978-1-4614-7545-3_3
Brown, D. (2017). The discovery of water channels (aquaporins). Annals of Nutrition and Metabolism, 70(1), 37-42. https://doi.org/10.1159/000463061
D'Acierno, M., Fenton, R. A., & Hoorn, E. J. (2024). The biology of water homeostasis. Nephrology Dialysis Transplantation. https://doi.org/10.1093/ndt/gfae235
Deen, P. M., Verdijk, M. A. J., Knoers, N., Wieringa, B., Monnens, L. A. H., Os, C. V., & Oost, B. V. (1994). Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science, 264(5155), 92-95. https://doi.org/10.1126/SCIENCE.8140421
DeHaven, J. C., & Shapiro, N. Z. (1967). On the control of urine formation.
Edwards, A. (2010). Modeling transport in the kidney: Investigating function and dysfunction. American Journal of Physiology-Renal Physiology, 298(3). https://doi.org/10.1152/AJPRENAL.00501.2009
Fenton, R. A. (2024). Editorial: Aquaporins in health and disease. The Journal of Physiology. https://doi.org/10.1113/jp286369
Filipets, N. D., Gozhenko, A. I., Ivanov, D. D., Filipets, O. O., Zukow, W., & Popovych, I. L. (2022). Regulatory mechanisms for maintaining homeostasis of sodium ions. Kidneys, 11(1), 56-67. https://kidneys.zaslavsky.com.ua
Filipets, N. D., Sirman, V. M., & Gozhenko, A. I. (2014). Механизмы ионорегулирующей функции почек при гистогемической гипоксии и возможные пути ее коррекции [Mechanisms of ion-regulating kidney function in histohemic hypoxia and possible ways of correction]. Нефрология, 18(4), 78-85. https://cyberleninka.ru
Filipets, N. D., Sirman, V. M., & Gozhenko, A. I. (2014). Сравнительный анализ тубулопротективных влияний представителей различных классов модуляторов ионных каналов [Comparative analysis of tubuloprotective effects of various classes of ion channel modulators]. Український журнал нефрології та діалізу, 3(43), 45-52.
Filipets, N. D., Vlasyk, L. I., Herush, O. V., Filipets, O. O., & Gozhenko, A. I. (2023). Експериментальна патологія нирок: моделі токсичних нефропатій [Experimental kidney pathology: Models of toxic nephropathies]. ResearchGate Preprint. https://researchgate.net
Frick, A., Eriksson, U. K., Mattia, F. D., Öberg, F., Hedfalk, K., Neutze, R., Grip, W. D., Deen, P. M., & Törnroth-Horsefield, S. (2014). X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6305-6310. https://doi.org/10.1073/PNAS.1321406111
Fröhlich, M., Deen, P. M. T., & Klipp, E. (2010). A systems biology approach: Modelling of aquaporin-2 trafficking. https://doi.org/10.1142/9781848166585_0004
Gade, W., & Robinson, B. (2006). A brief survey of aquaporins and their implications for renal physiology. Clinical Laboratory Science: Journal of the American Society for Medical Technology, 19(2), 70-79. https://doi.org/10.29074/ASCLS.19.2.70
Giebisch, G. (2004). Homer W. Smith's contribution to renal physiology. Journal of Nephrology, 17(1), 159-165.
Gozhenko, A. I., Dolamatov, S. I., Romaniv, L. V., & Kvasnitska, O. B. (2003). Возрастные особенности осморегулирующей функции почек белых крыс [Age-related features of osmoregulatory kidney function in white rats]. Нефрология, 7(2), 45-52. https://cyberleninka.ru
Gozhenko, A. I., Fedoruk, O. S., & Pohorila, I. V. (2002). Вплив аргініну на функціональний стан нирок щурів при сулемовій нефропатії [Effect of arginine on the functional state of rat kidneys in mercuric nephropathy]. Фізіологічний журнал, 48(3), 67-73. https://biph.kiev.ua
Gozhenko, A. I., & Filipets, N. D. (2013). Зміни показників діяльності нирок за умов поєднаного застосування флокаліну та еналаприлу [Changes in kidney function parameters under combined application of flokalin and enalapril]. Буковинський медичний вісник, 17(4), 34-38. https://irbis-nbuv.gov.ua
Gozhenko, A. I., & Filipets, N. D. (2014). Функціональний стан нирок після активації аденозинтрифосфатчутливих калієвих каналів при експериментальній гострій гіпоксії [Functional state of kidneys after activation of adenosine triphosphate-sensitive potassium channels in experimental acute hypoxia]. Фізіологічний журнал, 60(3), 56-62. https://irbis-nbuv.gov.ua
Gozhenko, A. I., & Filipets, N. D. (2017). Почечные еффекты активатора АТФ-зависимых калиевых каналов флокалина в физиологических условиях на моделях экспериментальных нефропатий [Renal effects of ATP-dependent potassium channel activator flokalin under physiological conditions in experimental nephropathy models]. Актуальні проблеми транспортної медицини, 2(48), 78-86. https://irbis-nbuv.gov.ua
Gozhenko, A. I., Hryshko, Y. M., Zukow, W., & Popovych, I. L. (2019). Роль білкового та ліпідного обмінів в енергетичному забезпеченні організму [Role of protein and lipid metabolism in energy supply of the organism]. Клінічна та експериментальна патологія, 18(2), 45-52. https://cep.bsmu.edu.ua
Zhengzhou, A. I., & Lebedeva, T. L. (2013). Физиологические основы гигиенического нормирования солевого состава питьевых режимов человека [Physiological basis for hygienic standardization of salt composition in human drinking regimens]. Вода: гигиена и экология, 2, 23-31. https://irbis-nbuv.gov.ua
Gozhenko, A. I., & Trusova, M. V. (2000). Вплив цитостатика іфосфаміду на функціональний стан нирок білих щурів [Effect of cytostatic ifosfamide on the functional state of white rat kidneys]. Фізіологічний журнал, 46(4), 56-62. https://fz.kiev.ua
Gozhenko, A. I., & Vladymyrova, M. P. (2001). Вплив бурштинової кислоти на функцію нирок білих щурів при гентаміциновій нефропатії [Effect of succinic acid on kidney function in white rats with gentamicin nephropathy]. Фізіологічний журнал, 47(2), 89-95. https://fz.kiev.ua
Hillyard, S. D. (2011). Sensing meets separation: Water transport across biological membranes. https://doi.org/10.1007/978-94-007-2184-5_1
Hillyard, S. D. (2015). Comparative and evolutionary physiology of water channels. https://doi.org/10.1007/978-1-4939-3213-9_2
Hoenig, M. P., & Zeidel, M. L. (2014). Homeostasis, the milieu intérieur, and the wisdom of the nephron. Clinical Journal of the American Society of Nephrology, 9(7), 1272-1281. https://doi.org/10.2215/CJN.08860813
Hrytsak, M. V., Badyuk, N. S., Popovych, D. V., Zhukov, V. A., & Gozhenko, A. I. (2022). Мінеральні води Трускавецького родовища "Воротище", "Мирослава" і "Христина": монографія [Mineral waters of Truskavets deposit "Vorotyshche", "Myroslava," and "Khrystyna": Monograph]. Torun: Uniwersytet Mikołaja Kopernika.
Huscha, S. H., Nasibullin, B. A., Bobro, O. V., Volyanska, V. S., & Gozhenko, A. I. (2020). Протекторний вплив хлоридної натрієвої мінеральної води на стан організму щурів з моделлю порушення вуглеводного обміну [Protective effect of sodium chloride mineral water on the state of rats with a model of carbohydrate metabolism disorders]. Актуальні проблеми транспортної медицини, 4(62), 89-97. https://aptm.com.ua
Ivanov, D. D. (2021). Безпечність та ефективність дезінтоксикаційної терапії Pеосорбілактом при ХХН 1–3-ї стадій [Safety and effectiveness of detoxification therapy with Reosorbilactum in CKD stages 1-3]. Kidneys, 10(2), 89-96. https://kidneys.zaslavsky.com.ua
Keogh, L. Kilroy, D., & Bhattacharjee, S. (2021). The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Annals of Anatomy-Anatomischer Anzeiger, 233. https://doi.org/10.1016/J.AANAT.2020.151610
Knepper, M. A. (2012). Systems biology in physiology: The vasopressin signaling network in the kidney. American Journal of Physiology-Cell Physiology, 303(11). https://doi.org/10.1152/AJPCELL.00270.2012
Koulouridis, E., & Koulouridis, I. (2014). The loop of Henle as the milestone of mammalian kidney concentrating ability: A historical review.
Kravchuk, A., V., Nykytenko, O., P., Sirman, V., M., Ivanov, D. D., & Gozhenko, A. I. (2016). Патофізіологічні та методологічні аспекти визначення функціонального ниркового резерву в клінічній нефрології [Pathophysiological and methodological aspects of determining functional renal reserve in clinical nephrology]. Kidneys, 5(3), 67-74. https://kidneys.zaslavsky.com.ua
Kuchel, P. W. (2006). The story of the discovery of aquaporins: Convergent evolution of ideas--but WHO got there first? Cellular and Molecular Biology, 52(7), 2-5.
Kvasnitska, O. B., & Gozhenko, A. I. (2007). Роль ренальної дисфункції в розвитку порушень водно-електролітного балансу у хворих на хронічний гепатит [Role of renal dysfunction in the development of water-electrolyte balance disorders in patients with chronic hepatitis]. Актуальні проблеми транспортної медицини, 2(8), 45-52. https://dspace.nbuv.gov.ua
Layton, A. T. (2013). Mathematical modeling of kidney transport. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5(5), 557-573. https://doi.org/10.1002/WSBM.1232
Leberecht, C., Schroeder, M., & Labudde, D. (2022). A multiscale model of the regulation of aquaporin 2 recycling. npj Systems Biology and Applications, 8(1). https://doi.org/10.1038/s41540-022-00223-y
Lieburg, A., V., Knoers, N., & Deen, P. M. (1995). Discovery of aquaporins - a breakthrough in research on renal water transport. Pediatric Nephrology, 9(2), 228-234. https://doi.org/10.1007/BF00860757
Mioni, R., Marega, A., Romano, G., & Montanaro, D. (2017). Mathematical rationalization for renal tubular transport: Revised concepts. Scandinavian Journal of Clinical & Laboratory Investigation, 77(5), 358-372. https://doi.org/10.1080/00365513.2017.1325927
Moss, R., & Thomas, S. R. (2014). Hormonal regulation of salt and water excretion: A mathematical model of whole kidney function and pressure natriuresis. American Journal of Physiology-Renal Physiology, 306(2). https://doi.org/10.1152/AJPRENAL.00089.2013
Navar, L. G. (2004). The legacy of Homer W. Smith: Mechanistic insights into renal physiology. Journal of Clinical Investigation, 114(8), 1048-1050. https://doi.org/10.1172/JCI23150
Nielsen, S., Frøkiær, J., Marples, D., Kwon, T., Agre, P., & Knepper, M. A. (2002). Aquaporins in the kidney: From molecules to medicine. Physiological Reviews, 82(1), 205-244. https://doi.org/10.1152/PHYSREV.00024.2001
Olesen, E. T. B., & Fenton, R. A. (2021). Aquaporin 2 regulation: Implications for water balance and polycystic kidney diseases. Nature Reviews Nephrology, 17(11), 765-781. https://doi.org/10.1038/S41581-021-00447-X
Pitts, R. F. (1960). II. Intrarenal sites of salt and water exchange introduction. Circulation, 21(5), 859-860. https://doi.org/10.1161/01.CIR.21.5.859
Renal physiology modeling, part 1: Acid-base balance, part 2: Body fluid balance. (n.d.). https://doi.org/10.1016/b978-0-323-95884-4.00002-0
Sweatha, N. C., Kayalvizhi, M. B., & Ghista, D. N. (2023). Renal physiology modeling, part 1: Acid-base balance, part 2: Body fluid balance. In Biomedical engineering of pancreatic, pulmonary, and renal systems, and applications to medicine 647-692. https://doi.org/10.1016/b978-0-323-95884-4.00002-0
Sabolić, I., Valenti, G., Verbavatz, J., Hoek, A. N. V., Verkman, A., S., Ausiello, D., A., & Brown, D. (1992). Localization of the CHIP28 water channel in rat kidney. American Journal of Physiology-Cell Physiology, 263(6). https://doi.org/10.1152/AJPCELL.1992.263.6.C1225
Salhadar, K., Matthews, A., Raghuram, V., Limbutara, K., Yang, C., Datta, A., Chou, C., & Knepper, M. A. (2021). Phosphoproteomic identification of vasopressin/cAMP/protein kinase A-dependent signaling in the kidney. Molecular Pharmacology, 99(5), 358-369. https://doi.org/10.1124/MOL.120.119602
Sands, J. M., Mount, D. B., & Layton, H. E. (2013). The physiology of water homeostasis. https://doi.org/10.1007/978-1-4614-3770-3_1
Schafer, J. A. (2004). Experimental validation of the countercurrent model of urinary concentration. American Journal of Physiology-Renal Physiology, 287(5). https://doi.org/10.1152/CLASSICESSAYS.00020.2004
Schlanger, L. E., & Sands, J. M. (2009). Vasopressin in the kidney—historical aspects. https://doi.org/10.1016/B978-0-12-373870-7.00016-8
Schlanger, L. E., & Sands, J. M. (2018). Vasopressin in the kidney—historical aspects. https://doi.org/10.1016/b978-0-12-803247-3.00005-2
Schrier, R. W. (2006). Body water homeostasis: Clinical disorders of urinary dilution and concentration. Journal of the American Society of Nephrology, 17(7), 1820-1832. https://doi.org/10.1681/ASN.2006030240
Seldin, D. W. (2004). The development of the clearance concept. Journal of Nephrology, 17(1), 166-171.
Shafran, L. M., & Gozhenko, A. I. (2009). Металонефропатії: теорія і практика [Metallonephropathies: Theory and practice]. Актуальні проблеми транспортної медицини, 3(17), 78-86. https://dspace.nbuv.gov.ua
Sirman, V., M., Boris, R. M., Nykytenko, O., P., Zukow, W., & Gozhenko, A. I. (2016). Гостре ураження нирок при запальних процесах і шляхи їх корекції [Acute kidney damage in inflammatory processes and ways of their correction]. Journal of Education, Health and Sport, 6(8), 234-245. https://apcz.umk.pl
Smirnov, I. V., Nasibullin, B. A., Bobro, O. V., Volyanska, V. S., & Gozhenko, A. I. (2023). Determining the state of the structural-functional continuum of the kidney under the influence of natural mineral water with increased content of organic substances. Bulletin of Problems in Biology and Medicine, 2(169), 234-241. https://vpbim.com.ua
Sung, C., C., Chen, L., Limbutara, K., Jung, H., J., Gilmer, G. G., Yang, C., Khositseth, S., Lin, S., Chou, C. L., & Knepper, M. A. (2018). RNA-seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes that initiate lithium-induced diabetes insipidus. bioRxiv. https://doi.org/10.1101/379875
Chen, L., Jung, H. J., Datta, A., Park, E., Poll, B. G., Kikuchi, H., Leo, K. T., Mehta, Y., Lewis, S., Khundmiri, S. J., Khan, S., Chou, C.-L., Raghuram, V., Yang, C.-R., & Knepper, M. A. (2022). Systems biology of the vasopressin V2 receptor: New tools for discovery of molecular actions of a GPCR. Annual Review of Pharmacology and Toxicology, 62, 595-616. https://doi.org/10.1146/annurev-pharmtox-052120-011012
Thomas, S. R. (2001). A brief history of theories concerning the mammalian urine concentrating mechanism. Acta Biotheoretica, 49(4), 327-340. https://doi.org/10.1023/A:1014238812491
Thomas, S. R. (2009). Kidney modeling and systems physiology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 1(2), 172-190. https://doi.org/10.1002/WSBM.14
Thomas, S., Layton, A. T., Layton, H. E., & Moore, L. C. (2006). Kidney modeling: Status and perspectives. https://doi.org/10.1109/JPROC.2006.871770
Tymofyychuk, I., Semenenko, S., Boreyko, L., & Yurniuk, S. (2020). Development of ideas about the physiology of urine formation (XVII-XX centuries). https://doi.org/10.24061/2411-6181.2.2020.188
Verbavatz, J., Brown, D., Sabolić, I., Valenti, G., Ausiello, D. A., Hoek, A. N. V., Ma, T., & Verkman, A. S. (1993). Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: A freeze-fracture study. Journal of Cell Biology, 123(3), 605-618. https://doi.org/10.1083/JCB.123.3.605
Verkman, A. S., Hoek, A. N. V., Ma, T., Frigeri, A., Skach, W. R., Mitra, A. K., Tamarappoo, B. K., & Farinas, J. (1996). Water transport across mammalian cell membranes. American Journal of Physiology-Cell Physiology, 270(1). https://doi.org/10.1152/AJPCELL.1996.270.1.C12
Vrettou, C., S., Issaris, V., Kokkoris, S., Poupouzas, G., Keskinidou, C., Lotsios, N., S., Kotanidou, Α., Orfanos, S. E., Dimopoulou, I., & Vassiliou, A. G. (2024). Exploring aquaporins in human studies: Mechanisms and therapeutic potential in critical illness. https://doi.org/10.20944/preprints202412.0352.v1
Wirz, H. (1968). Tubulusfunktionen, membrantransporte, harnkonzentrierung und diureseformen. https://doi.org/10.1007/978-3-642-95038-4_4
Yang, C., Park, E., Chen, L., Datta, A. K., Chou, C., & Knepper, M. A. (2022). Proteomics and AQP2 regulation. The Journal of Physiology. https://doi.org/10.1113/jp283899
Yu, M., Miller, R. L., Uawithya, P., Rinschen, M., M., Khositseth, S., Braucht, D. W. W., Chou, C., Pisitkun, T., Nelson, R. D., & Knepper, M. A. (2009). Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct. Proceedings of the National Academy of Sciences of the United States of America, 106(7), 2441-2446. https://doi.org/10.1073/PNAS.0813002106
Zukow, W., Gozhenko, A. I., & Popovych, I. L. (2018). Interdisciplinary approaches in health and sport sciences: Methods of data analysis in biomedical research. Journal of Education, Health and Sport, 8(9), 651-665. https://doi.org/10.5281/zenodo.1345345
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anatoliy Gozhenko, Walery Zukow, Olena Gozhenko, Dmytro Ivanov, Mykhailo Saensus

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 107
Number of citations: 0