Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Does the Implication Elimination Rule Need a Minor Premise?
  • Strona domowa
  • /
  • Does the Implication Elimination Rule Need a Minor Premise?
  1. Strona domowa /
  2. Archiwum /
  3. Tom 27 Nr 3 (2018): September /
  4. Artykuły

Does the Implication Elimination Rule Need a Minor Premise?

Autor

  • Nissim Francez the Technion-IIT

DOI:

https://doi.org/10.12775/LLP.2017.019

Słowa kluczowe

natural deduction, NJ, proof-theoretic semantics, grounds for assertion, term assignment

Abstrakt

The paper introduces NJ g , a variant of Gentzen’s NJ natural deduction system, in which the implication elimination rule has no minor premise. The NJ g -systems extends traditional ND-system with a new kind of action in derivations, assumption incorporation, a kind of dual to the assumption discharge action. As a result, the implication (I/E)-rules are invertible and, almost by definition, harmonious and stable, a major condition imposed by proof-theoretic semantics on ND-systems to qualify as meaning-conferring. There is also a proof-term assignment to NJ g -derivations, materialising the Curry-Howard correspondence for this system.

Biogram autora

Nissim Francez - the Technion-IIT

Computer Science Department

Bibliografia

Avron, A., “Simple consequence relations”, Information and Computation 92, 1 (1991): 105–139. DOI: 10.1016/0890-5401(91)90023-U

Dočsen, K., “Logical constants as punctuation marks”, Notre Dame Journal of Formal Logic 30, 3 (1989): 362–381. PDF: https://projecteuclid.org/download/pdf_1/euclid.ndjfl/1093635154

Dummett, M., The Logical Basis of Metaphysics, Harvard University Press, Cambridge, MA., 1993 (paperback); hard copy 1991.

Francez, N., Proof-theoretic Semantics, College Publications, London, 2015.

Francez, N., “Relevant harmony”, Journal of Logic and Computation 26, 1 (2016): 235–245. Special issue Logic: Between Semantics and Proof Theory, in honor of Arnon Avron’s 60th birthday. DOI: 10.1093/logcom/ext026

Francez, N., “Views of proof-theoretic semantics: Reified proof-theoretic meanings”, Journal of Computational Logic 26, 2 (2016): 479–494. Special issue in honour of Roy Dyckhoff. DOI: 10.1093/logcom/exu035

Gentzen, G., “The consistency of elementary number theory”, pages 493–565 in M.E. Szabo (ed.), The Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam, 1935. English translation of the 1935 paper in Mathematische Annalen (in German).

Gentzen, G., “Investigations into logical deduction”, pages 68–131 in M.E. Szabo (ed.), The Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam, 1935. English translation of the 1935 paper in German.

Hazen, A.P., and F.J. Pelletier, “Gentzen and Jaśkowski natural deduction: Fundamentally similar but importantly different”, Studia Logica 102, 6 (2014): 1–40. Special Issue: “Gentzen’s and Jaśkowski’s Heritage 80 Years of Natural Deduction and Sequent Calculi”, edited by A. Indrzejczak. DOI: 10.1007/s11225-014-9564-1

Hindley, J.R., Basic Simple Type Theory, Cambridge University Press, 1997. DOI: 10.1017/CBO9780511608865

Hitzmann, J., “Semantic partition and the ambiguity of sentences containing temporal adverbials”, J. of Semantics, in press, 1997.

Jacinto, B., and S. Read, “General-elimination stability”, Studia Logica 105, 2 (2017): 361–405. DOI: 10.1007/s11225-016-9692-x

Jaśkowski, S., “Teoria dedukcji oparta na regułach założeniowych” (Theory of deduction based on suppositional rules), page 36 in Księga pamiątkowa pierwszego polskiego zjazdu matematycznego (Proceedings of the First Polish Mathematical Congress), Polish Mathematical Society,

Kraków, 1929.

Jaśkowski, S., “On the rules of suppositions in formal logic”, Studia Logica, 1 (1936): 5–32. Reprinted: pages 232–258 in S. McCall, Polish Logic 1920–1939, Oxford UP, 1967.

Johansson, I., “Der minimalkalkül, ein reduzierter intuitionistischer formalismus”, Compositio Mathematica 4 (1936): 119–136.

Negri, S., and J. von Plato, Structural Proof Theory, CambridgeUniversity Press, Cambridge, UK, 2001. DOI: 10.1017/CBO9780511527340

Prawitz, D., Natural Deduction: A Proof-Theoretical Study, Almqvist and Wicksell, Stockholm, 1965. Soft cover edition by Dover, 2006.

Prawitz, D., “Meaning approached via proofs”, Synthese 148, 3 (2006): 507–524. DOI: 10.1007/s11229-004-6295-2

Prawitz, D., “Explaining deductive inference”, pages 233–248 in H. Wansing (ed.), Dag Prawitz on proofs and meaning, Springer, 2014. Volume 7 of the series “Outstanding Contributions to Logic”. DOI: 10.1007/978-3-319-11041-7_3

Schroeder-Heister, P., “A natural extension of natural deduction”, Journal of Symbolic Logic 49, 4 (1984): 1284–1300. DOI: 10.2307/2274279

Schroeder-Heister, P., “On the notion of assumption in logical systems”, in R. Bluhm and C. Nimtz (eds.), Philosophy-Science-Scientific Philosophy, Mentis, Paderborn, 2004. Selected papers of the 5th int. congress of the society for Analytic Philosophy, Bielfield, September 2003.

Schroeder-Heister, P., “The categorical and the hypothetical: A critique of some fundamental assumptions of standard semantics”, Synthese 187, 3 (2012): 925–942. DOI: 10.1007/s11229-011-9910-z

Schroeder-Heister, P., “Proof-theoretic semantics”, in E.N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Spring 2013 edition, 2013. https://plato.stanford.edu/archives/win2016/entries/proof-theoretic-semantics/

Scott, D., “Rules and derived rules”, pages 101–118 in S. Stenlund (ed.), Logical Theory and Semantic Analysis, Reidl, Dordrecht, 1974. DOI: 10.1007/978-94-010-2191-3_13

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

21.07.2017

Jak cytować

1.
FRANCEZ, Nissim. Does the Implication Elimination Rule Need a Minor Premise?. Logic and Logical Philosophy [online]. 21 lipiec 2017, T. 27, nr 3, s. 351–373. [udostępniono 8.7.2025]. DOI 10.12775/LLP.2017.019.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 27 Nr 3 (2018): September

Dział

Artykuły

Statystyki

Liczba wyświetleń i pobrań: 883
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

natural deduction, NJ, proof-theoretic semantics, grounds for assertion, term assignment
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa