Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Tautology Elimination, Cut Elimination, and S5
  • Strona domowa
  • /
  • Tautology Elimination, Cut Elimination, and S5
  1. Strona domowa /
  2. Archiwum /
  3. Tom 26 Nr 4 (2017): December /
  4. Artykuły

Tautology Elimination, Cut Elimination, and S5

Autor

  • Andrzej Indrzejczak Uniwersytet Mikołaja Kopernika, Katedra Logiki

DOI:

https://doi.org/10.12775/LLP.2017.005

Słowa kluczowe

sequent calculus, tautology elimination, cut elimination, modal logic S5

Abstrakt

Tautology elimination rule was successfully applied in automated deduction and recently considered in the framework of sequent calculi where it is provably equivalent to cut rule. In this paper we focus on the advantages of proving admissibility of tautology elimination rule instead of cut for sequent calculi. It seems that one may find simpler proofs of admissibility for tautology elimination than for cut admissibility. Moreover, one may prove its admissibility for some calculi where constructive proofs of cut admissibility fail. As an illustration we present a cut-free sequent calculus for S5 based on tableau system of Fitting and prove admissibility of tautology elimination rule for it.

Biogram autora

Andrzej Indrzejczak - Uniwersytet Mikołaja Kopernika, Katedra Logiki

Department of Logic

Bibliografia

Brighton, J., “Cut elimination for GLS using the terminability of its regress process”, Journal of Philosophical Logic 5, 2 (2016): 147–153. DOI: 10.1007/s10992-015-9368-4

Bednarska, K., and A. Indrzejczak, “Hypersequent calculi for S5: The methods of cut elimination”, Logic and Logical Philosophy 24, 3 (2015): 277–311. DOI: 10.12775/LLP.2015.018

Davis, M., and H. Putnam, “A computing procedure for quantification theory”, Journal of the Assoc. Comput. Mach. 7, 3 (1960): 201–215. DOI: 10.1145/321033.321034

Fitting, M., Proof Methods for Modal and Intuitionistic Logics, Reidel, Dordrecht 1983. DOI: 10.1007/978-94-017-2794-5

Fitting, M., “Simple propositional S5 tableau system”, Annals of Pure and Applied Logic 96, 1–3 (1999): 101–115. DOI: 10.1016/S0168-0072(98)00034-7

Gallier, J.H., Logic for Computer Science, Harper and Row, New York 1986.

Gao, F., and G. Tourlakis, “A short and readable proof of cut elimination for two first-order modal logics”, Bulletin of the Section of Logic 44, 3–4 (2015): 131–148. DOI: 10.18778/0138-0680.44.3.4.03

Indrzejczak, A., “Simple decision procedure for S5 in standard cut-free sequent calculus”, Bulletin of the Section of Logic 45, 2 (2016): 125–140. DOI: 10.18778/0138-0680.45.2.05

Lyaletski, A.V., “A note on the cut rule”, in Abstracts of the International Conference “Maltsev Meeting”, vol. 137, Novosibirsk 2011.

Negri, S., and J. von Plato, Structural Proof Theory, Cambridge University Press, Cambridge 2001. DOI: 10.1017/CBO9780511527340

Ohnishi, M., K. Matsumoto, “Gentzen method in modal calculi I”, Osaka Mathematical Journal 9 (1957): 113–130.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

05.04.2017

Jak cytować

1.
INDRZEJCZAK, Andrzej. Tautology Elimination, Cut Elimination, and S5. Logic and Logical Philosophy [online]. 5 kwiecień 2017, T. 26, nr 4, s. 461–471. [udostępniono 1.7.2025]. DOI 10.12775/LLP.2017.005.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 26 Nr 4 (2017): December

Dział

Artykuły

Statystyki

Liczba wyświetleń i pobrań: 904
Liczba cytowań: 1

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

sequent calculus, tautology elimination, cut elimination, modal logic S5
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa