Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

A meta-logic of inference rules: Syntax
  • Strona domowa
  • /
  • A meta-logic of inference rules: Syntax
  1. Strona domowa /
  2. Archiwum /
  3. Tom 24 Nr 3 (2015): September /
  4. Artykuły

A meta-logic of inference rules: Syntax

Autor

  • Alex Citkin Metropolitan Telecommunications, New York

DOI:

https://doi.org/10.12775/LLP.2015.007

Słowa kluczowe

propositional logic, multiple-conclusion rule, rejected proposition, Ł-system, admissible rule, deductive system

Abstrakt

This work was intended to be an attempt to introduce the meta-language for working with multiple-conclusion inference rules that admit asserted propositions along with the rejected propositions. The presence of rejected propositions, and especially the presence of the rule of reverse substitution, requires certain change the definition of structurality.

Bibliografia

Bonatti, P., and A. C. Varzi, “On the meaning of complementary systems”, in 10th International Congress of Logic, Methodology and Philosophy of Science. Volume of Abstracts, 1995.

Caferra, R., and N. Peltier, “Accepting/rejecting propositions from accepted/rejected propositions: A unifying overview”, International Journal of Intelligent Systems, 23 (2008), 999–1020. DOI: 10.1002/int.20304

Caferra, R., and N. Zabel, “A method for simultaneous search for refutations and models by equational constraint solving”, J. Symbolic Comput., 13, 6 (1992): 613–641. DOI: 10.1016/S0747-7171(10)80014-8

Carnap, R., Introduction to Semantics, Harvard University Press, Cambridge,

Mass., 1942.

Carnap, R., Formalization of Logic, Harvard University Press, Cambridge, Mass., 1943.

Church, A., “Review of the book Formalization of Logic by R. Carnap”, The Journal of Symbolic Logic, 53, 5 (1953): 493–498.

Dummett, M., The Logical Basis of Metaphysics, Harvard University Press, 1991.

Dummett, M., “‘Yes’, ‘no’ and ‘can’t say’”, Mind, 111, 442 (2002): 289–295.

Dutkiewicz, R., “The method of axiomatic rejection for the intuitionistic propositional logic”, Studia Logica, 48, 4 (1989): 449–459. DOI: 10.1007/BF00370199

Gibbard, P., “Price and Rumfitt on rejective negation and classical logic”, Mind, 111, 442 (2002): 297–303.

Goranko, V.. “Refutation systems in modal logic”, Studia Logica, 53, 2 (1994): 299–324. DOI: 10.1007/BF01054714

Hähnle, R., “Tableaux and related methods”, A. Robinson et al. (eds.), Handbook of automated reasoning, in two vols., Amsterdam: North-Hollandm Elsevier, 2001. DOI: 10.1016/B978-044450813-3/50005-9

Humberstone, L., “The revival of rejective negation”, J. Philos. Logic 29, 4 (2000): 331–381. DOI: 10.1023/A:1004747920321

Iemhoff, R., and G. Metcalfe, “Hypersequent systems for the admissible rules of modal and intermediate logics”, pp. 230–245 in Logical foundations of computer science, vol. 5407 of “Lecture Notes in Comput. Sci.”, Springer, Berlin, 2009. DOI: 10.1007/978-3-540-92687-0_16

Iemhoff, R., and G. Metcalfe, “Proof theory for admissible rules”, Ann. Pure Appl. Logic 159, 1–2 (2009): 171–186. DOI: 10.1016/j.apal.2008.10.011

Incurvati, L., and P. Smith, “Rejection and valuations”, Analysis 70, 1 (2010): 3–10. DOI: 10.1093/analys/anp134

Ishimoto, A., “Axiomatic rejection for classical propositional logic”, pp. 257–270, Chapter 18 in Philosophical logic and Logical Philosophy, vol. 257 of “Synthese Library”, Kluwer Acad. Publ., Dordrecht, 1996. DOI: 10.1007/978-94-015-8678-8_18

Jeřabek, E., “Admissible rules of modal logics”, J. Logic Comput. 15, 4 (2005): 411–431. DOI: 10.1093/logcom/exi029

Jeřabek, E., “Canonical rules”, J. Symbolic Logic 74, 4 (2009): 1171–1205.

Johnson, F., “Rejection and truth-value gaps”, Notre Dame J. Formal Logic 40, 4 (1999): 574–577. DOI: 10.1305/ndjfl/1012429721

Kleene, S.C., Introduction to Metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952.

Kneale, W., “The province of logic”, pp. 235–261 in Contemporary British Philosophy, 3rd series, H. Lewis (ed.), G. Allen & Unwin, London, 1956.

Kneale, W., “The province of logic”, Mind 66, 262 (1957): 258.

Kracht, M., “Book review of [36]”, Notre Dame J. Form. Log. 40, 4 (1999): 578–587.

Kracht, M., “Judgment and consequence relations”, J. Appl. Non-Classical Logics 20, 4 (2010): 423–435. DOI: 10.3166/jancl.20.423-435

Kulicki, P., “Remarks on axiomatic rejection in Aristotle’s syllogistic”, Studies in Logic and Theory of Knowledge 5 (2002): 231–236.

Łukasiewicz, J., Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, Oxford, at the Clarendon Press, 1951.

Łukasiewicz, J., “On the intuitionistic theory of deduction”, Nederl. Akad.

Wetensch. Proc., Ser. A., 55 = Indagationes Math., 14 (1952): 202–212.

Malinowski, G., “Q-consequence operation”, Rep. Math. Logic, 24 (1990): 49–59.

Murzi, J., and O. T. Hjortland, “Inferentialism and the categoricity problem: Reply to Raatikainen”, Analysis, 69, 3 (2009): 480–488. DOI: 10.1093/analys/anp071

Prawitz, D., Natural Deduction. A Proof-Theoretical Study, Acta Universitatis Stockholmiensis, Stockholm Studies in Philosophy, no. 3., Almqvist & Wiksell, Stockholm, 1965.

Restall, G., “Multiple conclusions”, pp. 189–205 in Logic, Methodology and Philosophy of Science: Proceedings of the Twelfth International Congress, P. Hajek, L. Valdes-Villanueva, and D. Westerstahl (eds.), Kings College Publications, 2005.

Rumfitt, I., “‘Yes’ and ‘No’”, Mind 109, 436 (2000): 781–823.

Rumfitt, I., “Unilateralism disarmed: A reply to: “‘Yes’, ‘no’ and ‘can’t say’” Mind, 111 (2002), 442: 289–295, by M. Dummett and “Price and Rumfitt on rejective negation and classical logic”, Mind, 111 (2002), 442: 297–303, by P. Gibbard”, Mind 111, 442 (2002): 305–321.

Rumfitt, I., “Knowledge by deduction”, pp. 61–84 in Knowledge and Questions, L. Franck (ed.), vol. 77 of “Grazer Philosophische Studien”, Rodopi, 2008.

Rybakov, V. V., Admissibility of Logical Inference Rules, vol. 136 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1997.

Scott, D., “Completeness proofs for the intuitionistic sentential calculus”, pp. 231–241 in Summer Institute for Symbolic Logic, Cornell University, Amer. Math. Soc., 1957.

Scott, D., “On engendering an illusion of understanding”, The Journal of Philosophy 68, 21 (1971): 787–807. DOI: 10.2307/2024952

Scott, D.S., “Background to formalization”, pp. 244–273 in Truth, Syntax and Modality. Proc. Conf. Alternative Semantics, Temple, Univ. Philadelphia, Pa., vol. 68 of Studies in Logic and the Foundations of Math., North-Holland, Amsterdam, 1973. DOI: 10.1016/S0049-237X(08)71542-8

Scott, D.S., “Completeness and axiomatizability in many-valued logic”, pp. 411–435 in Proceedings of the Tarski Symposium. Proc. Sympos. Pure Math., vol. XXV, Univ. California, Berkeley, Calif., 1971.

Scott, D.S. “Rules and derived rules”, pp. 147–161 in Logical Theory and Semantic Analysis. Essays dedicated to Stig Kanger, S. Stenlund (ed.), D. Reidel Publishing Company, 1974. DOI: 10.1007/978-94-010-2191-3_13

Shoesmith, D.J., and T.J. Smiley, Multiple-Conclusion Logic, Cambridge University Press, Cambridge, 2008. Reprint of the 1978 original [MR0500331]. DOI: 10.1017/CBO9780511565687

Skura, T., “A complete syntactical characterization of the intuitionistic logic”, Reports on Mathematical Logic 23 (1989): 75–80.

Skura, T., “Aspects of refutation procedures in the intuitionistic logic and related modal systems, Acta Universitatis Wratislaviensis 2190, Wrocław, 1998.

Skura, T., “On refutation rules”, Log. Univers., 5, 2 (2011): 249–254. DOI: 10.1007/s11787-011-0035-4

Skura, T., “Refutation systems in propositional logic”, pp. 115–157 in vol. 16 of Handbook of Philosophical Logic, D.M. Gabbay and F. Guenthner (eds.), Springer, 2011. DOI:˙10.1007/978-94-007-0479-4_2

Skura, T., Refutation Methods in Modal Propositional Logic, Semper, 2013.

Słupecki, J., Z badań nad sylogistyka Arystotelesa, Wrocławskie Towarzystwo Naukowe, 1948.

Słupecki, J., G. Bryll, and U. Wybraniec-Skardowska, “Theory of rejected propositions. I”, Studia Logica, 29 (1971): 75–123. DOI: 10.1007/BF02121863

Słupecki, J., G. Bryll, and U. Wybraniec-Skardowska, “The theory of rejected propositions. II”, Studia Logica 30 (1972): 97–145. DOI: 10.1007/BF02120839

Smiley, T., “Rejection”, Analysis, 56, 1 (1996), 1–9. DOI: 10.1093/analys/56.1.1

Sochacki, R., “Axiomatic rejection in the implicational-negational invariant sentential calculi of Łukasiewicz”, Bull. Sect. Logic Univ. Łódź, 36, 1–2 (2007), 1–6.

Sochacki, R., Metody refutacyjne w badaniach nad systemami logicznymi (in Polish), Universytet Opolski, 2010.

Staszek, W., “On proofs of rejection”, Studia Logica, 29 (1971): 17–25. DOI: 10.1007/BF02121854

Tanaka, K., F. Berto, E. Mares, and F. Paoli (eds.), Paraconsistency: Logic and Applications, vol. 26 of “Logic, Epistemology, and the Unity of Sscience”, Springer, 2013. DOI: 10.1007/978-94-007-4438-7

Tiomkin, M., “Proving unprovability”, pp. 22–26 in Proceedings. Third Annual Information Symposium on Logic in Computer Science, 1988. DOI: 10.1109/LICS.1988.5097

Varzi, A.C., “Complementary logics for classical propositional languages”, Kriterion. Zeitschrift fur Philosophie, 4 (1992): 20–24.

Wójcicki, R., “Dual counterparts of consequence operations”, Polish Acad. Sci. Inst. Philos. Sociology Bull. Sect. Logic 2, 1 (1973): 54–57.

Wybraniec-Skardowska, U., and J. Waldmajer, “On pairs of dual consequence operations”, Log. Univers., 5, 2 (2011): 177–203. DOI: 10.1007/s11787-011-0030-9

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

09.03.2015

Jak cytować

1.
CITKIN, Alex. A meta-logic of inference rules: Syntax. Logic and Logical Philosophy [online]. 9 marzec 2015, T. 24, nr 3, s. 313–337. [udostępniono 8.7.2025]. DOI 10.12775/LLP.2015.007.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 24 Nr 3 (2015): September

Dział

Artykuły

Statystyki

Liczba wyświetleń i pobrań: 553
Liczba cytowań: 6

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

propositional logic, multiple-conclusion rule, rejected proposition, Ł-system, admissible rule, deductive system
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa