Admissibility of Ackermann’s rule δ in relevant logics
DOI:
https://doi.org/10.12775/LLP.2013.018Słowa kluczowe
admissible rules, rule δ, rule assertion, substructural logics, relevant logicsAbstrakt
It is proved that Ackermann’s rule δ is admissible in a wide spectrum of relevant logics satisfying certain syntactical properties.
Bibliografia
Ackermann, W., “Begründung einer strengen Implikation”, Journal of Symbolic Logic, 21 (1956), 2: 113–128. DOI: 10.2307/2268750
Anderson, A.R., and N.D. Belnap Jr., Entailment. The Logic of Relevance and Necessity, vol. I, Princeton University Press, 1975.
Anderson, A.R., N.D. Belnap Jr. and J.M. Dunn, Entailment. The Logic of Relevance and Necessity, vol. II, Princeton, NJ, Princeton University Press, 1992.
Brady, R.T., “A Routley-Meyer Affixing style semantics for logics containing Aristotle’s thesis”, Studia Logica, 48 (1989), 2: 235–241. DOI: 10.1007/BF02770514
Brady, R.T. (ed.), Relevant logics and their rivals, vol. II, Ashgate, 2003.
Hacking, I., “What is strict implication?”, Journal of Symbolic Logic, 28 (1963): 51–71. DOI: 10.2307/2271336
Robles, G., “A semantical proof of the admissibility of the rule assertion in some relevant and modal logics”, Bulletin of the Section of Logic, 41 (2012), 1/2: 51–60.
Robles, G., and J.M. Méndez, “A class of simpler logical matrices for the variable-sharing property”, Logic and Logical Philosophy, 20 (2011), 3: 241–249. DOI: 10.12775/LLP.2011.014
Robles, G., and J.M. Méndez, “A general characterization of the variable-sharing property by means of logical matrices”, Notre Dame Journal of Formal Logic, 53 (2012), 2: 223–244. DOI: 10.1215/00294527-1715707
Routley, R., R.K. Meyer, V. Plumwood and R.T. Brady, Relevant Logics and their Rivals, vol. 1, Atascadero, CA, Ridgeview Publishing Co., 1982.
Sylvan, R., and V. Plumwood, “Non-normal relevant logics”, in [5], pp. 10–16.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Statystyki
Liczba wyświetleń i pobrań: 620
Liczba cytowań: 2