Socrates did it before Gödel
DOI:
https://doi.org/10.12775/LLP.2011.011Słowa kluczowe
the “paradoxon” of Socrates, Gödel’s Second Incompleteness Theorem, a ramified epistemic logic with propositional quantifiersAbstrakt
We translate Socrates’ famous saying I know that I know nothing into the arithmetical sentence I prove that I prove nothing. Then it is easy to show that this translated saying is formally undecidable in formal arithmetic, using Gödel’s Second Incompleteness Theorem. We investigate some variations of this Socrates-Gödel sentence. In an appendix we sketch a ramified epistemic logic with propositional quantifiers in order to analyze the Socrates-Gödel sentence in a more logical way, separated from the arithmetical context.Bibliografia
Kurt Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I”, Monatshefte für Mathematik und Physik 38 (1931): 173–198.
Craig Smorynski, “The incompleteness theorems”, in: Jon Barwise (editor), Handbook of Mathematical Logic, North-Holland, 1977.
Craig Smorynski, Self-Reference and Modal Logic, Springer, 1985.
Pobrania
Opublikowane
30.11.2011
Jak cytować
1.
DEGEN, Josef Wolfgang. Socrates did it before Gödel. Logic and Logical Philosophy [online]. 30 listopad 2011, T. 20, nr 3, s. 205–214. [udostępniono 29.6.2025]. DOI 10.12775/LLP.2011.011.
Numer
Dział
Artykuły
Statystyki
Liczba wyświetleń i pobrań: 521
Liczba cytowań: 0