Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Analogy and diagonal argument
  • Strona domowa
  • /
  • Analogy and diagonal argument
  1. Strona domowa /
  2. Archiwum /
  3. Tom 15 Nr 1 (2006) /
  4. Artykuły

Analogy and diagonal argument

Autor

  • Zbigniew Tworak Department of Logic, Nicolaus Copernicus University

DOI:

https://doi.org/10.12775/LLP.2006.003

Słowa kluczowe

analogy, diagonal argument, antinomy, limitative theorems, provability, refutability, undecidability, truth

Abstrakt

In this paper, I try to accomplish two goals. The first is to provide a general characterization of a method of proofs called — in mathematics — the diagonal argument. The second is to establish that analogical thinking plays an important role also in mathematical creativity. Namely, mathematical research make use of analogies regarding general strategies of proof. Some of mathematicians, for example George Polya, argued that deductions is impotent without analogy. What I want to show is that there exists a direct line leading from Cantor’s diagonal argument to constructions that underlies of the proofs of several important theorems of the mathematical logic (in particular, Church’s theorem concerning the undecidability of formal arithmetic, Gödel’s theorem concerning the incopleteness of formal arithmetic, Tarski’s theorem concerning truth, and Turing’s theorem concerning the Halting Problem), and that the line could be described as an analogical mapping. In other words, Cantor’s diagonal argument and the proofs of the limitative theorems are structurally the same. Hence they can be represented as instances (or special cases) of the same general scheme.

Biogram autora

Zbigniew Tworak - Department of Logic, Nicolaus Copernicus University

Zakład Logiki i Metodologii Nauk

Bibliografia

Cantor, G., “Über eine elementare Frege der Mannigfaltigkeitslehre”, Jahresbericht der Mathematiker-Vereinigung 1 (1890–91), 75–78, reprinted in: E. Zermelo (ed.), Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Berlin, J. Springer 1932, pp. 278–281.

Church, A., “An unsolvable problem of elementary number theory”, American Journal of Mathematics 58 (1936), 345–363, reprinted in: M. Davis (ed.), The Undecidable, Raven Press, New York 1965, pp. 89–107.

Gödel, K., “Über formal unnentscheidbare Sätze der ‘Principia mathematica’ und verwandter Systeme I”, Monatshefte für Mathematik und Physik 38 (1931), 173–198; translated in: J. van Heijenoort (ed.), From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge,

MA, 1967, pp. 596–616.

Gumański, L., “Remarks on Cantor’s Diagonal Method and Some Related Topics”, Ruch Filozoficzny LVII, 3/4 (2000), 437–448.

Hallett, M., Cantorian Set Theory and Limitation of Size, Clarendon Press, Oxford, 1984.

Krajewski, S., Twierdzenie Gödla i jego interpretacje filozoficzne. Od mechanicyzmu do postmodernizmu, Wydawnictwo IFiS PAN, Warszawa, 2003.

Martin, R. L., “On a Puzzling Classical Validity”, Philosophical Review LXXXVI, 4, (1977), 454–473.

Murawski, R., Filozofia matematyki. Zarys dziejów, PWN, Warszawa, 1995.

Murawski, R., Recursive Functions and Metamathematics, Synthese Library vol. 286, Kluwer Academic Publishers, Dordrecht – Boston – London, 1999.

Russell, B., The Principles of Mathematics, Cambridge University Press, Cambridge, 1903.

Simmons, K., “The diagonal argument and the Liar”, Journal of Philosophical Logic 19 (1990), 277–303.

Smullyan, R., Diagonalization and Self-Reference, Clarendon Press, Oxford, 1994.

Tarski, A., Pojęcie prawdy w językach nauk dedukcyjnych, Warszawa, 1933; translated in: Logic, semantics, metamathematics. Papers from 1923 to 1938, Clarendon Press, Oxford 1956, pp. 152–277.

Turing, A., “On computable numbers, with an application to Entscheidungsproblem”, Proceedings of the London Mathematical Society Ser. 2, Vol. 42 (1937), 230–265; reprinted in: M. Davis (ed.), The Undecidable, Raven Press, New York 1965, pp. 116–154.

Woleński, J., Metamatematyka a epistemologia, PWN, Warszawa, 1993.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

26.03.2006

Jak cytować

1.
TWORAK, Zbigniew. Analogy and diagonal argument. Logic and Logical Philosophy [online]. 26 marzec 2006, T. 15, nr 1, s. 39–66. [udostępniono 5.7.2025]. DOI 10.12775/LLP.2006.003.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 15 Nr 1 (2006)

Dział

Artykuły

Statystyki

Liczba wyświetleń i pobrań: 831
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

analogy, diagonal argument, antinomy, limitative theorems, provability, refutability, undecidability, truth
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa