Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Pieces of mereology
  • Strona domowa
  • /
  • Pieces of mereology
  1. Strona domowa /
  2. Archiwum /
  3. Tom 14 Nr 2 (2005) /
  4. Artykuły

Pieces of mereology

Autor

  • Andrzej Pietruszczak Department of Logic, Nicolaus Copernicus University http://orcid.org/0000-0001-9133-5081

DOI:

https://doi.org/10.12775/LLP.2005.014

Słowa kluczowe

mereology, mereological structures, axioms of mereology, collective sets, mereological sets, mereological fusions, mereological parts

Abstrakt

In this paper we will treat mereology as a theory of some structures that are not axiomatizable in an elementary language (one of the axioms will contain the predicate ‘belong’ (‘∈’) and we will use a variable ranging over the power set of the universe of the structure). A mereological structure is an ordered pair M = <M,⊑>, where M is a non-empty set and ⊑ is a binary relation in M, i.e., ⊑ is a subset of M × M. The relation ⊑ is a relation of being a mereological part (instead of ‘<x,y> ∈ ⊑’ we will write ‘x ⊑ y’ which will be read as “x is a part of y”). We formulate an axiomatization of mereological structures, different from Tarski’s axiomatization as presented in [10] (Tarski simplified Leśniewski’s axiomatization from [6]; cf. Remark 4). We prove that these axiomatizations are equivalent (see Theorem 1). Of course, these axiomatizations are definitionally equivalent to the very first axiomatization of mereology from [5], where the relation of being a proper part ⊏ is a primitive one.

Moreover, we will show that Simons’ “Classical Extensional Mereology” from [9] is essentially weaker than Leśniewski’s mereology (cf. Remark 6).

Biogram autora

Andrzej Pietruszczak - Department of Logic, Nicolaus Copernicus University

Department of Logic

Bibliografia

Breitkopf, A., “Axiomatisierung einiger Begriffe aus Nelson Goodmans The Structure of Appearance”, Erkenntnis 12, 229–247.

Eberle, R., “Some complete calculi of individuals”, NDJFL 8 (1967), 267–278.

Goodman, N. The Structure of Appearance, Cambridge Massachusetts 1951.

Leonard, H. S., N. Goodman, “The calculus of individuals and its uses”, Journal of Symbolic Logic, vol. 5, 2 (1940), 45–55. DOI: http://dx.doi.org/10.2307/2266169

Leśniewski, S., “O podstawach matematyki. Rozdział IV”, Przegląd Filozoficzny XXXI (1928), 261–291. English version: “On the foundations of mathematics. Chapter IV”, pp. 226–263 in: Collected Works, S.J. Surma, J.T. Srzednicki and D.I. Barnett (eds.), PWN – Kluwer Academic Publishers, Dordrecht, 1991.

Leśniewski, S., “O podstawach matematyki. Rozdziały VI-IX”, Przegląd Filozoficzny XXXIII (1930), 77–105. English version: “On the fundations of mathematics. Chapters VI-IX”, pp. 313–349 in: Collected Works, S.J. Surma, J.T. Srzednicki and D.I. Barnett (eds.), PWN – Kluwer Academic Publishers, Dordrecht, 1991.

Pietruszczak, A., “Kawałki mereologii” (Pieces of Mereology), pp. 357–374 in: Logika & Filozofia Logiczna. FLFL 1996–1998, J. Perzanowski and A. Pietruszczak (eds.), Nicolaus Copernicus University Press, Toruń 2000.

Pietruszczak, A., Metamereologia (Metamereology), Nicolaus Copernicus University Press, Toruń 2000.

Simons, P. M., Parts. A Study in Ontology, Oxford 1987.

Tarski, A., “Les fondements de la géometrie des corps”, pp. 29–30 in: Księga Pamiątkowa Pierwszego Zjazdu Matematycznego, Kraków 1928. English translation: “Foundations of the geometry of solid”, pp. 24–29 in: Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford 1956.

Tarski, A., “Zur Grundlegung der Booleschen Algebra. I”, Fundamenta Mathematicae 24, 177–198. English translation “On the foundations of Boolean algebra”, pp. 320–341 in: Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford 1956.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

23.12.2005

Jak cytować

1.
PIETRUSZCZAK, Andrzej. Pieces of mereology. Logic and Logical Philosophy [online]. 23 grudzień 2005, T. 14, nr 2, s. 211–234. [udostępniono 5.7.2025]. DOI 10.12775/LLP.2005.014.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 14 Nr 2 (2005)

Dział

Artykuły

Statystyki

Liczba wyświetleń i pobrań: 582
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

mereology, mereological structures, axioms of mereology, collective sets, mereological sets, mereological fusions, mereological parts
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa