Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

In Defense of Quantifier Generalism: Holism and Infinitary Resources
  • Home
  • /
  • In Defense of Quantifier Generalism: Holism and Infinitary Resources
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

In Defense of Quantifier Generalism: Holism and Infinitary Resources

Authors

  • Tomasz Bigaj Faculty of Philosophy, University of Warsaw https://orcid.org/0000-0002-8121-9789

DOI:

https://doi.org/10.12775/LLP.2025.024

Keywords

quantifier generalism, algebraic generalism, individuals, holism, infinitary quantification, arithmetic, non-standard models

Abstract

According to quantifier generalism, all facts about the world can be expressed in a language devoid of proper names, whose only referential expressions are variables bound by quantifiers. This paper considers and repels some of the recently raised objections against this position. The central part of the paper presents a critical analysis of the claim advanced by Ted Sider that quantifier generalism is inevitably holistic and therefore requires unusually strong expressive resources when applied to infinite domains. Using an example of arithmetic, it is shown that there is a simple generalistic description of natural numbers that does not resort to any infinitary conjunctions or quantifiers. Such generalistic accounts also exist in many cases involving continua (such as descriptions of matter distribution in a continuous space). Moreover, these accounts are arguably superior to their individualistic counterparts due to their parsimony. In addition to that, Sider’s argument alleging that generalism cannot account for the difference between non-isomorphic models of arithmetic is repelled.

References

Belot, G. (1995), “New work for counterpart theorists: Determinism”, The British Journal for the Philosophy of Science, 46: 185–195.

Belot, G. (2018), “Fifty Million Elvis Fans can’t be wrong”, Noûs, 52: 946–981.

Boolos, G. S, and R. C. Jeffrey (1980), Computability and Logic, Second edition, Cambridge: Cambridge University Press.

Cowling, S. (2015), “Non-qualitative properties”, Erkenntnis, 80: 275–301.

Dasgupta, S. (2009), “Individuals: An essay in revisionary metaphysics”, Philosophical Studies, 145: 35–67.

Dasgupta, S. (2016), “Can we do without fundamental individuals? Yes”, pages 7–23 in E. Barnes (ed.), Current Controversies in Metaphysics, New York: Routledge.

Diehl, C. (2018), “A language for ontological Nnihilism”, Ergo, 5(37): 971–996.

Glick, D. (2016), “Minimal structural essentialism. Why physics doesn’t care which is which”, pages 207–225 in A. Guay and T. Pradeau (eds.), Individuals Across the Sciences, Oxford: Oxford University Press.

Glick, D. (2020), “Generalism and the metaphysics of ontic structural realism”, The British Journal for the Philosophy of Science, 71: 751–772.

Kment, B. (2012), “Haecceitism, chance and counterfactuals”, Philosophical Review, 121(4): 573–609.

Kuhn, S. T. (1983), “An axiomatization of predicate functor logic”, Notre Dame Journal of Formal Logic, 24(2): 233–241.

Plate, J. (2022), “Qualitative properties and relations”, Philosophical Studies , 179(4): 1297--1322. DOI: https://doi.org/10.1007/s11098-021-01708-y

Pooley, O. (2006), “Points, particles, and structural realism”, pages 83–120 in D. Rickles, S. French and J. Saatsi (eds.), The Structural Foundations of Quantum Gravity, Oxford: Oxford University Press.

Quine, W. v. O. (1960), “Variables explained away”, Proceedings of the American Philosophical Society, 104(3): 343–347.

Quine, W. v. O. (1976), “Algebraic logic and predicate functors”, pages 283–307 in The Ways of Paradox and Other Essays, Second Edition, Cambridge Mass.: Harvard University Press.

Sider, T. (2020), The Tools of Metaphysics and the Metaphysics of Science, Oxford: Clarendon Press.

Stachel, J. (2002), “ ‘The relations between things’ versus ‘the things between relations’: The Deeper meaning of the hole argument”, pages 231–266 in D. Malament (ed.), Reading Natural Philosophy. Essays in the History and Philosophy of Science and Mathematics, Chicago: Open Court.

Svenonius, L. (1960), Some Problems in Logical Model Theory, Library of Theoria, Lund.

Turner, J. (2011), “Ontological nihilism”, pages 3–52 in K. Bennett and D. W. Zimmerman (eds.), Oxford Studies in Metaphysics, Vol. 6, Oxford: Oxford University Press.

Turner, J. (2016), “Can we do without fundamental individuals? No”, pages 24-34 in E. Barnes (ed.), Current Controversies in Metaphysics, New York: Routledge.

van Fraassen, B. (1991), Quantum Mechanics: An Empiricist View, Oxford: Clarendon Press.

Downloads

  • PDF

Published

2025-12-01

How to Cite

1.
BIGAJ, Tomasz. In Defense of Quantifier Generalism: Holism and Infinitary Resources. Logic and Logical Philosophy. Online. 1 December 2025. pp. 1-18. [Accessed 12 December 2025]. DOI 10.12775/LLP.2025.024.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

License

Copyright (c) 2025 Tomasz Bigaj

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 86
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

quantifier generalism, algebraic generalism, individuals, holism, infinitary quantification, arithmetic, non-standard models
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop