Reaching Classicality through Transitive Closure
DOI:
https://doi.org/10.12775/LLP.2025.019Słowa kluczowe
three-valued logics, transitive closure, Non-classical logics, strict-tolerant logic, logic of paradox, Strong Kleene logic, Weak Kleene logicAbstrakt
Recently, Da Ré, Szmuc, Chemla and Égré (2024) showed that all logics based on Boolean Normal monotonic three-valued schemes coincide with classical logic when defined using a strict-tolerant standard (st). Conversely, they proved that under a tolerant-strict standard (ts), the resulting logics are all empty. Building on these results, we show that classical logic can be obtained by closing under transitivity the union of two logics defined over (potentially different) Boolean normal monotonic schemes, using a strict-strict standard (ss) for one and a tolerant-tolerant standard (tt) for the other, with the first of these logics being paracomplete and the other being paraconsistent. We then identify a notion dual to transitivity that allows us to characterize the logic TS as the dual transitive closure of the intersection of any two logics defined over (potentially different) Boolean normal monotonic schemes, using an ss standard for one and a tt standard for the other. Finally, we expand on the abstract relations between the transitive closure and dual transitive closure operations, showing that they give rise to lattice operations that precisely capture how the logics discussed relate to one another.
Bibliografia
Asenjo, F. G., 1966, “A calculus of antinomies”, Notre Dame Journal of Formal Logic, 7(1): 103–105. DOI: https://doi.org/10.1305/ndjfl/1093958482
Avron, A., and I. Lev, 2005, “Non-deterministic multiple-valued structures”, Journal of Logic and Computation, 15(3): 241–261. DOI: https://doi.org/10.1093/logcom/exi001
Beaver, D., and E. Krahmer, 2001, “A partial account of presupposition projection”, Journal of Logic, Language and Information, 10(2): 147–182. DOI: https://doi.org/10.1023/A:1008371413822
Blomet, Q., and P. Égré, 2024, “ST and TS as product and sum”, Journal of Philosophical Logic, 53(6): 1673–1700. DOI: https://doi.org/10.1007/s10992-024-09778-z
Bochvar, D. A., 1981, “On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus”, History and Philosophy of Logic 2(1–2): 87–112. English translation of Bochvar’s paper of 1938. DOI: https://doi.org/10.1080/01445348108837023
Carnielli, W., J. Marcos, and S. De Amo, 2000, “Formal inconsistency and evolutionary databases”, Logic and Logical Philosophy, 8: 115–152. DOI: https://doi.org/10.12775/LLP.2000.008
Chemla, E., P. Égré and B. Spector, 2017, “Characterizing logical consequence in many-valued logic”, Journal of Logic and Computation, 27(7): 2193–2226. DOI: https://doi.org/10.1093/logcom/exx001
Cobreros, P., P. Egré, E. Ripley and R. Van Rooij, 2012, “Tolerant, classical, strict”, Journal of Philosophical Logic, 41(2): 347–385. DOI: https://doi.org/10.1007/s10992-010-9165-z
Cobreros, P., P. Égré, E. Ripley and R. Van Rooij, 2013, “Reaching transparent truth”, Mind, 122(488): 841–866. DOI: https://doi.org/10.1093/mind/fzt110
Da Ré, B., D. Szmuc, E. Chemla and P. Égré, 2024, “On three-valued presentations of classical logic”, The Review of Symbolic Logic, 17(3): 682–704. DOI: https://doi.org/10.1017/S1755020323000114
Dunn, J. M., 1976, “A Kripke-style semantics for R-mingle using a binary accessibility relation”, Studia Logica, 35(2): 163–172. DOI: https://doi.org/10.1007/BF02120878
Ferguson, T. M., 2023, “Monstrous content and the bounds of discourse”, Journal of Philosophical Logic, 52(1): 111–143. DOI: https://doi.org/10.1007/s10992-022-09666-4
Field, H., 2008, Saving Truth from Paradox, OUP: Oxford. DOI: https://doi.org/10.1093/acprof:oso/9780199230747.001.0001
Font, J. M., 2016, Abstract Algebraic Logic: An Introductory Textbook, College Publications.
Halldén, S., 1949, The Logic of Nonsense, Uppsala Universitets Arsskrift, Sweden.
George, B. R., 2014, “Some remarks on certain trivalent accounts of presupposition projection”, Journal of Applied Non-Classical Logics, 24(1–2): 86–117. DOI: https://doi.org/10.1080/11663081.2014.911521
Kadlečiková, J., and T. M. Ferguson, 2024, “Counterexample sufficiency in modifications to strict-tolerant logics”, pages 78–84 in 2024 IEEE 54th International Symposium on Multiple-Valued Logic (ISMVL), IEEE. DOI: https://doi.org/10.1109/ISMVL60454.2024.00025
Kleene, S. C., 1952, Introduction to Metamathematics, North Holland, Van Nostrand: Amsterdam, New York.
Makinson, D. C., 1973, Topics in Modern Logic. Methuen: London.
Pailos, F., B. and Da Ré, 2023, Metainferential Logics, Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-44381-7
Peters, S., 1979, “A truth-conditional formulation of Karttunen’s account of presupposition”, Synthese, 40(2): 301–316. DOI: https://doi.org/10.1007/BF00485682
Přenosil, A., 2023, “The lattice of super-Belnap logics”, The Review of Symbolic Logic, 16(1): 114–163. DOI: https://doi.org/10.1017/S1755020321000204
Priest, G., 1979. “The logic of paradox”, Journal of Philosophical Logic, 8(1): 219–241. DOI: https://doi.org/10.1007/BF00258428
Ripley, E., 2012, “Conservatively extending classical logic with transparent truth”, The Review of Symbolic Logic, 5(2): 354–378. DOI: https://doi.org/10.1017/S1755020312000056
Rivieccio, U., 2012, “An infinity of super-Belnap logics”, Journal of Applied Non-Classical Logics, 22(4): 319–335. DOI: https://doi.org/10.1080/11663081.2012.737154
Szmuc, D., and T. M. Ferguson, 2021, “Meaningless divisions”, Notre Dame Journal of Formal Logic, 62(3): 399–424. DOI: https://doi.org/10.1215/00294527-2021-0022
Wintein, S., 2016, “On all strong Kleene generalizations of classical logic”, Studia Logica, 104(3): 503–545. DOI: https://doi.org/10.1007/s11225-015-9649-5
Wójcicki, R., 1988, Theory of Logical Calculi: Basic Theory of Consequence Operations, Vol. 199, Springer Science and Business Media.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Quentin Blomet, BRUNO DA RE

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 322
Liczba cytowań: 0