Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Fitch's Paradox in Fusions of Epistemic and Alethic Logics
  • Strona domowa
  • /
  • Fitch's Paradox in Fusions of Epistemic and Alethic Logics
  1. Strona domowa /
  2. Archiwum /
  3. Prace online /
  4. Artykuły

Fitch's Paradox in Fusions of Epistemic and Alethic Logics

Autor

  • Arkadiusz Wójcik University of Białystok https://orcid.org/0000-0002-9895-8449

DOI:

https://doi.org/10.12775/LLP.2025.027

Słowa kluczowe

Fitch’s paradox, knowability paradox, knowability principle, epistemic logic, fusions of modal logics, modal correspondence theory

Abstrakt

In this paper, we analyze Fitch’s paradox of knowability in the framework of fusions of epistemic and alethic modal logics. The paradox arises from accepting the knowability principle, which states that all truths are knowable. However, this leads to the unacceptable conclusion that all truths are known. We introduce a logical system that incorporates all assumptions used by Fitch in his original reasoning, including the knowability principle. We present a natural semantics for this logic, proving the soundness and completeness theorem. Additionally, we present a new semantic proof of the knowability paradox, demonstrating that the problematic conclusion can be derived independently of Fitch’s original proof and showing that the knowability principle itself is the source of the paradox. Using the formal tools introduced, we conduct a semantic analysis of the paradox, which allows us to identify the root cause of its occurrence. Finally, we propose a weakened version of the knowability principle that avoids paradoxical conclusions.

Bibliografia

Artemov, S., and T. Protopopescu, “Discovering knowability: A semantic analysis”, Synthese, 190 (2013): 3349–3376. DOI: CrossRef

Balbiani, P., A. Baltag, H. van Ditmarsch, A. Herzig, T. Hoshi, and T. De Lima, “Knowable as known after an announcement”, Review of Symbolic Logic, 1, 3 (2008): 305–334. DOI: CrossRef

Beall, J. C., “Knowability and possible epistemic oddities”, pages 105–125 in J. Salerno (ed.), New Essays on the Knowability Paradox, New York: Oxford University Press, 2009. DOI: CrossRef

Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge University Press, Cambridge, 2001. DOI:

Brogaard, B., and J. Salerno, “Clues to the paradoxes of knowability: reply to Dummett and Tennant”, Analysis, 62, 2 (2002): 143–150. DOI: CrossRef

Bueno, O., “Fitch’s paradox and the philosophy of mathematics”, pages 252–280 in J. Salerno (ed.), New Essays on the Knowability Paradox, New York: Oxford University Press, 2009. DOI: CrossRef

Burgess, J., “Can truth out?”, pages 147–162 in J. Salerno (ed.), New Essays on the Knowability Paradox, New York: Oxford University Press, 2009. DOI: CrossRef

Church, A., “Referee reports on Fitch’s A definition of value”, pages 13–20 in J. Salerno (ed.), New Essays on the Knowability Paradox, New York: Oxford University Press, 2009. DOI: CrossRef

Costa-Leite, A., “Fusions of modal logics and Fitch’s paradox”, Croatian Journal of Philosophy, 6, 2 (2006): 281–290. DOI: CrossRef

Costa-Leite, A., Interactions of Metaphysical and Epistemic Concepts, PhD Thesis, University of Neuchatel, Switzerland, 2007.

DeVidi, D., and G. Solomon, “Knowability and intuitionistic logic”, Philosophia, 28 (2001): 319–334. DOI: CrossRef

Douven, I., “A principled solution to Fitch’s paradox”, Erkenntnis, 62, 1 (2005): 47–69. DOI: CrossRef

Dummett, M., “Victor’s error”, Analysis, 61, 1 (2001): 1–2. DOI: CrossRef

Dummett, M., “Fitch’s paradox of knowability”, pages 51–52 in J. Salerno (ed.), New Essays on the Knowability Paradox, New York: Oxford University Press, 2009. DOI: CrossRef

Edgington, D., “The paradox of knowability”, Mind, 94, 376 (1985): 557–568. DOI: CrossRef

Égré, P., “Le paradoxe de Fitch dans l’œil du positiviste: y a-t-il des vérités inconnaissables”, Les ˙Etudes Philosophiques, 1 (2008): 71–95. DOI: CrossRef

Fitch, F. B., “A logical analysis of some value concepts”, Journal of Symbolic Logic, 28, 2 (1963): 135–142. DOI: CrossRef

Fine, K., and G. Schurz, “Transfer theorems for multimodal logics”, pages 169–213 in B. J. Copeland (ed.), Logic and Reality: Essays on the Legacy of Arthur Prior, Oxford: Cambridge University Press, 1996. DOI: CrossRef

Gabbay, D. M, A. Kurucz, F. Wolter, and M. Zakharyaschev, Many-Dimensional Modal Logics: Theory and Applications, Studies in Logic and the Foundations of Mathematics, vol. 148, Elsevier, Amsterdam, 2003.

Hand, M., and J. L. Kvanvig, “Tennant on knowability”, Australasian Journal of Philosophy, 77, 4 (1999): 422–428. DOI: CrossRef

Hintikka, J., Knowledge and Belief, Cornell University Press, Ithaca, 1962.

Hintikka, J., “On the logic of perception”, pages 151–183 in J. Hintikka, Models for Modalities: Selected Essays, Dordrecht: Springer, 1969. DOI: CrossRef

Jago, M., “Closure on knowability”, Analysis, 70, 4 (2010): 648–659. DOI: CrossRef

Kinkaid, J., “Phenomenology, anti-realism, and the knowability paradox”, European Journal of Philosophy, 30, 3 (2022): 1010–1027. DOI: CrossRef

Kracht, M., and Wolter, F., “Properties of independently axiomatizable bimodal logics”, Journal of Symbolic Logic, 56, 4 (1991): 1469–1485. DOI: CrossRef

Kripke, S., “A completeness theorem in modal logic”, Journal of Symbolic Logic, 24, 1 (1959): 1–14. DOI: CrossRef

Kripke, S., “Semantical analysis of modal logic I. Normal modal propositional calculi”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9, 5–6 (1963): 67–96. DOI: CrossRef

Kurucz, A., “Combining modal logics”, pages 869–924 in P. Blackburn, J. van Benthem, and F. Wolter (eds.), Handbook of Modal Logic, Amsterdam: Elsevier, 2007. DOI: CrossRef

Kvanvig, J., “The knowability paradox and the prospects for anti-realism”, Nous, 29, 4 (1995): 481–499. DOI: CrossRef

Łukowski, P., Paradoxes, Springer Netherlands, Dordrecht, 2011. DOI: CrossRef

Mackie, J. L., “Truth and knowability”, Analysis, 40, 2 (1980): 90–92. DOI: CrossRef

Nozick, R., Philosophical Explanations, Harvard University Press, Cambridge, 1981.

Percival, P., “Fitch and intuitionistic knowability”, Analysis, 50, 3 (1990): 182–187. DOI: CrossRef

Priest, G., “Beyond the limits of knowledge”, pages 93–104 in J. Salerno (ed.), New Essays on the Knowability Paradox, New York: Oxford University Press, 2009. DOI: CrossRef

Quine, W. v. O., “The limits of knowledge”, pages 59–67 in The Ways of Paradox and Other Essays, New York: Random House, 1976.

Restall, G., “Not every truth can be known (at least, not all at once)”, pages 339–354 in J. Salerno (ed.), New Essays on the Knowability Paradox, New York: Oxford University Press, 2009. DOI: CrossRef

Sahlqvist, H., “Correspondence and completeness in the first and second order semantics for modal logic”, pages 110–143 in S. Kanger (ed.), Proceedings of the Third Scandinavian Logic Symposium. Uppsala 1973, Amsterdam: North Holland Publishing, 1973. DOI: CrossRef

Salerno, J., “Introduction”, pages 1–10 in J. Salerno (ed.), New Essays on the Knowability Paradox, New York: Oxford University Press, 2009. DOI: CrossRef

Salerno, J., “Knowability noir: 1945–1963”, pages 29–48 in J. Salerno (ed.), New Essays on the Knowability Paradox, New York: Oxford University Press, 2009. DOI: CrossRef

Tennant, N., The Taming of the True, Oxford University Press, Oxford, 2002. DOI: CrossRef

Thomason, S. K., “Independent propositional modal logics”, Studia Logica, 39 (1980): 143–144. DOI: CrossRef

van Benthem, J., “Modal reduction principles”, Journal of Symbolic Logic, 41, 2 (1976): 301–312. DOI: CrossRef

van Benthem, J., Modal Correspondence Theory, PhD Thesis, Mathematisch Instituut & Instituut voor Grondslagenonderzoek, University of Amsterdam, 1976.

van Benthem, J., “What one may come to know”, Analysis, 64, 2 (2004): 95–105. DOI: CrossRef

van Ditmarsch, H., B. and Kooi, “The secret of my success”, Synthese, 151 (2006): 201–232. DOI: CrossRef

van Ditmarsch, H., van W. der Hoek, W., and B. Kooi, Dynamic Epistemic Logic, Springer Netherlands, Dordrecht, 2007. DOI: CrossRef

Wansing, H., “Diamonds are a philosopher’s best friends”, Journal of Philosophical Logic, 31, 6 (2002):

591–612. DOI: CrossRef

Williamson, T., “Knowability and constructivism”, Philosophical Quarterly, 38, 153 (1988): 422–432. DOI: CrossRef

Williamson, T., “On intuitionistic modal epistemic logic”, Journal of Philosophical Logic, 21, 1 (1992): 63–89. DOI: CrossRef

Williamson, T., “Verificationism and non-distributive knowledge”, Australasian Journal of Philosophy, 71, 1 (1993): 78–86. DOI: CrossRef

Wójcik, A., “The knowability paradox and unsuccessful updates”, Studies in Logic, Grammar and Rhetoric, 62, 1 (2020): 53–71. DOI: CrossRef

Pobrania

  • PDF (English)

Opublikowane

05.12.2025

Jak cytować

1.
WÓJCIK, Arkadiusz. Fitch’s Paradox in Fusions of Epistemic and Alethic Logics. Logic and Logical Philosophy [online]. 5 grudzień 2025, s. 1–37. [udostępniono 13.2.2026]. DOI 10.12775/LLP.2025.027.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Prace online

Dział

Artykuły

Licencja

Prawa autorskie (c) 2025 Arkadiusz Wójcik

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 370
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

Fitch’s paradox, knowability paradox, knowability principle, epistemic logic, fusions of modal logics, modal correspondence theory
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa