Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

A Misleading Triviality Argument in the Theory of Conditionals
  • Strona domowa
  • /
  • A Misleading Triviality Argument in the Theory of Conditionals
  1. Strona domowa /
  2. Archiwum /
  3. Tom 33 Nr 3 (2024): Wrzesień /
  4. Artykuły

A Misleading Triviality Argument in the Theory of Conditionals

Autor

  • Anna Wójtowicz Deparment of Philosophical Logic, Faculty of Philosophy, Warsaw University https://orcid.org/0000-0002-6177-964X
  • Krzysztof Wójtowicz Deparment of Philosophical Logic, Faculty of Philosophy, Warsaw University https://orcid.org/0000-0002-1187-8762

DOI:

https://doi.org/10.12775/LLP.2024.015

Słowa kluczowe

probability of conditionals, Dutch Book, triviality results, Hájek’s update rules, PCCP

Abstrakt

PCCP is the much discussed claim that the probability of a conditional A → B is conditional probability. Triviality results purport to show that PCCP – as a general claim – is false. A particularly interesting proof has been presented in (Hájek, 2011), who shows that – even if a probability distribution P initially satisfied PCCP – a rational update can produce a non-PCCP probability distribution.

We argue that the notion of rational update in this argumentation is construed in much too broad a way. In order to make the argumentation precise, we discuss the general rules for modeling conditionals in probability spaces and present formalized version(s) of PCCP and of minimal assumptions concerning the appropriate spaces. Using the introduced apparatus we give a detailed analysis of Hájek’s (2011) triviality proof and show that it is based on an application of revision rules which allow one to construct probability distributions violating not only PCCP, but also fundamental properties of conditionals.

This means that they do not really provide arguments against PCCP, properly formalized. We also discuss a Dutch Book argument which shows that the updated belief system is not coherent. This gives an additional, strong argument against accepting the update rules. We also discuss the Converse Dutch Book theorem and argue, that even if the produced probability measure seems to violate it, it cannot serve as the counterexample, as it is not an appropriate model for conditionals. Ultimately, we show that important arguments against PCCP fail.

Bibliografia

Adams, E. W., 1965, “On the logic of conditionals”, Inquiry 8: 166–197. DOI: : https://doi.org/10.1080/00201746508601430

Adams, E. W., 1970, “Subjunctive and indicative conditionals”, Foundations of Language 6: 89–94. DOI: : https://doi.org/10.2307/2272204

Adams, E. W., 1975,The Logic of Conditionals, Dordrecht: D. Reidel.

Adams, E. W., 1998, “A useful four-valued logic”, pages 7–37 in J. M. Dunn and G. Epstein (eds.), Modern Uses of Multiple-Valued Logic, Boston: Reidel Publishing Company. DOI: : https://doi.org/10.1007/978-94-010-1161-7_2

Bennett, J., 2003, A Philosophical Guide to Conditionals, Oxford: Clarendon Press.

Berto, R., and A. Özgün, 2021, “Indicative conditionals: Probabilities and relevance”, Philosophical Studies 178: 3697–3730. DOI: : https://doi.org/s11098-021-01622-3

Cruz, N., D. Over, M. Oaksford, and J. Baratgin, 2016, “Centering and the meaning of conditionals”, pages 1104–1109 in A. Papafragou, D. Grodner, D. Mirman, and J. C. Trueswell (eds.), Proceedings of the 38th Annual Conference of the Cognitive Science Society, Cognitive Science Society.

de Finetti, B., 1937, “La Prévision: ses lois logiques, ses sources subjectives”, Annales de l’Institut Henri Poincaré 7: 1–68; trans. as “Foresight: Its Logical Laws, its Subjective Sources”, pages 93–159 in H. E. Kyburg and H. E. Smokler (eds.), Studies in Subjective Probability, New York: Wiley, 1980.

Easwaran, K., 2011a, “Bayesianism I: Introduction and arguments in favor”, Philosophy Compass 6(5): 312–320. DOI: : https://doi.org/10.1111/j.1747-9991.2011.00399.x

Easwaran, K., 2011b, “Bayesianism II: Criticisms and applications”, Philosophy Compass 6(5): 321–332. DOI: : https://doi.org/10.1111/j.1747-9991.2011.00398.x

Edgington, D., 1995, “On conditionals”, Mind 104: 235–329. DOI: : https://doi.org/10.1093/mind/104.414.235

Edgington, D., 2020, “Indicative conditionals”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Fall 2020 Edition), : https://plato.stanford.edu/archives/fall2020/entries/conditionals/

Egré, P., and H. Rott, 2021, “The logic of conditionals”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2021 Edition). : https://plato.stanford.edu/archives/win2021/entries/logic-conditionals/

Evans, J. St. B. T., and D. E. Over, 2004, If: Supposition, Pragmatics, and Dual Processes, Oxford: Oxford University Press.

Fitelson, B., 2015, “The strongest possible Lewisian triviality result”, Thought 4: 69–74. DOI: : https://doi.org/10.1002/tht3.159

Grice, H. P., 1989, Studies in the Way of Words, Cambridge: Harvard University Press.

Hájek, A., 1989, “Probabilities of conditionals  revisited”, Journal of Philosophical Logic 18: 423–428.

Hájek, A., 2008, “Arguments for – or against – probabilism?”, British Journal for the Philsophy of Science 59(4): 793–819. DOI: : https://doi.org/10.1093/bjps/axn045

Hájek, A., 2009, “Dutch Book arguments”, pages 173–195 in P. Anand, P. K. Pattanaik, C. Puppe (eds.),The Handbook of rational and social choice, Oxford University Press. DOI: : https://doi.org/10.1093/acprof:oso/9780199290420.001.0001

Hájek, A., 2011,“Triviality pursuit”, Topoi 30(1): 3–15. DOI: : https://doi.org/10.1007/s11245-010-9083-2

Hájek, A., 2012, “The Fall of “Adams’ Thesis”?”, Journal of Logic, Language and Information 21: 145–161. DOI: : https://doi.org/10.1007/s10849-012-9157-1

Hájek, A., and N. Hall, 1994, “The hypothesis of the conditional construal of conditional probability”, pages: 75–110 in E. Eells and B. Skyrms (eds.), Probabilities and Conditionals: Belief Revision and Rational Decision, Cambridge: Cambridge University Press.

Hall, N., 1994, “Back in the (CCCP)”, pages 141–160 in E. Eells and B. Skyrms (eds.), Probabilities and Conditionals: Belief Revision and Rational Decision, Cambridge: Cambridge University Press.

Jackson, F., 1987, Conditionals, New York: Blackwell.

Kaufmann, S., 2004, “Conditioning against the grain: Abduction and indicative conditionals”, Journal of Philosophical Logic 33(6): 583–606. DOI: : https://doi.org/10.1023/B:LOGI.0000046142.51136.bf

Kaufmann, S. 2005, “Conditional predictions: A probabilistic account”, Linguistics and Philosophy 28(2): 181–231. DOI: : https://doi.org/10.1007/s10988-005-3731-9

Kaufmann, S., 2009, “Conditionals right and left: Probabilities for the whole family”, Journal of Philosophical Logic 38: 1–53. DOI: : https://doi.org/10.1007/s10992-008-9088-0

Kaufmann, S., 2015, “Conditionals, conditional probability, and conditionalization”, pages 71–94 in H. Zeevat and H. C. Schmitz (eds.), Bayesian Natural Language Semantics and Pragmatics, New York, Heidelberg: Springer.

Kaufmann, S., 2023, “Bernoulli semantics and ordinal semantics for conditionals”, Journal of Philosophical Logic 52: 199–220. DOI: : https://doi.org/10.1007/s10992-022-09670-8

Khoo, J., and P. Santorio, 2018, Lecture Notes: Probability of Conditionals in Modal Semantics. : http://paolosantorio.net/teaching.html

Lewis, D., 1976, “Probabilities of conditionals and conditional probabilities”, Philosophical Review 85: 297–315. DOI: : https://doi.org/10.2307/2184045

Lewis, D., 1986, “Probabilities of conditionals and conditional rrobabilities II”, Philosophical Review 95: 581–589. DOI: : https://doi.org/10.2307/2185051

McGee, V., 1989, “Conditional probabilities and compounds of conditionals”, Philosophical Review 98(4): 485–541. DOI: : https://doi.org/10.2307/2185116

Milne, P., 2003, “The simplest Lewis-style triviality proof yet?”, Analysis 63(4): 300–303. DOI: : https://doi.org/10.1093/analys/63.4.300

Ramsey, F. P., 1990, “General propositions and causality”, pages 145–163 in D. H. Mellor (ed.), Philosophical Papers, Cambridge: Cambridge University Press.

Rehder, W., 1982, “Conditions for probabilities of conditionals to be conditional probabilities”, Synthese 53: 439–443.

Stalnaker, R., 1968, “A theory of conditionals”, Studies in Logical Theory, American Philosophical Quarterly 2: 98–112.

Stalnaker, R., 2009, “Conditional propositions and conditional assertions”, pages 277–248 in A. Egan and B. Weatherson (eds.), Epistemic Modality, Oxford: Oxford University Press. DOI: : https://doi.org/10.1093/acprof:oso/9780199591596.003.0008

Stalnaker, R., 2019, Knowledge and Conditionals, Oxford: Oxford University Press.

van Fraassen, B. C., 1976, “Probabilities of conditionals”, pages 261–308 in W. L. Harper, R. Stalnaker, and G. Pearce (eds.), Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, Dordrecht: D. Reidel.

van Fraassen, B. C., 1984, “Belief and the will”, The Journal of Philosophy 81(5): 235–256. DOI: : https://doi.org/10.2307/2026388

Vineberg, S., 2016, “Dutch Book arguments”, in E. N. Zalta (ed.),The Stanford Encyclopedia of Philosophy (Spring 2016 Edition). : https://plato.stanford.edu/archives/spr2016/entries/dutch-book/

Węgrecki, J., and L. Wroński, 2023, “Revisiting the conditional construal of conditional probability”, Logic and Logical Philosophy 32(2): 261–268. DOI: : https://doi.org/10.12775/LLP.2022.024

Wójtowicz, A., and K. Wójtowicz, 2021a, “A stochastic graphs semantics for conditionals”, Erkenntnis 86,: 1071–1105. DOI: : https://doi.org/10.1007/s10670-019-00144-z

Anna Wójtowicz, Krzysztof Wójtowicz Wójtowicz, A., and K. Wójtowicz, 2021b, “Dutch Book against Lewis”, Synthese 199: 9185–9217. DOI: : https://doi.org/10.1007/s11229-021-03199-0

Wójtowicz, K., and A. Wójtowicz, 2022, “A graph model for probabilities of nested conditionals”, Linguistics and Philosophy 45(3): 1–48. DOI: : https://doi.org/10.1007/s10988-021-09324-z

Wójtowicz, A., and K. Wójtowicz, 2023, “A minimal probability space for conditionals”, Journal of Philosophical Logic 52(3): 1385–1415. DOI: : https://doi.org/10.1007/s10992-023-09710-x

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

04.05.2024

Jak cytować

1.
WÓJTOWICZ, Anna & WÓJTOWICZ, Krzysztof. A Misleading Triviality Argument in the Theory of Conditionals. Logic and Logical Philosophy [online]. 4 maj 2024, T. 33, nr 3, s. 349–380. [udostępniono 29.6.2025]. DOI 10.12775/LLP.2024.015.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 33 Nr 3 (2024): Wrzesień

Dział

Artykuły

Licencja

Prawa autorskie (c) 2024 Anna Wójtowicz, Krzysztof Wójtowicz

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 776
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

probability of conditionals, Dutch Book, triviality results, Hájek’s update rules, PCCP
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa