Normal Proofs and Tableaux for the Font-Rius Tetravalent Modal Logic
DOI:
https://doi.org/10.12775/LLP.2024.006Słowa kluczowe
tetravalent modal logic, natural deduction, tableaux, normal proofs, paraconsistent logics, paracomplete logics, Belnap-Dunn logicAbstrakt
Tetravalent modal logic (TML) was introduced by Font and Rius in 2000. It is an expansion of the Belnap-Dunn four-valued logic FOUR, a logical system that is well-known for the many applications found in several fields. Besides, TML is the logic that preserves degrees of truth with respect to Monteiro’s tetravalent modal algebras. Among other things, Font and Rius showed that TML has a strongly adequate sequent system, but unfortunately this system does not enjoy the cut-elimination property. However, in a previous work we presented a sequent system for TML with the cut-elimination property. Besides, in this same work, it was also presented a sound and complete natural deduction system for this logic.
In the present article we continue with the study of TML under a proof-theoretic perspective. In the first place, we show that the natural deduction system that we introduced before admits a normalization theorem. In the second place, taking advantage of the contrapositive implication for the tetravalent modal algebras introduced by A. V. Figallo and P. Landini, we define a decidable tableau system adequate to check validity in the logic TML. Finally, we provide a sound and complete tableau system for TML in the original language. These two tableau systems constitute new (proof-theoretic) decision procedures for checking validity in the variety of tetravalent modal algebras.
Bibliografia
Anderson, A. R., and N. D. Belnap (with contributions by thirteen others), Entailment: the Logic of Relevance and Necessity, Vol. II, Princeton University Press, 1992.
Arieli, O., and A. Avron, “The value of the four values”, Artificial Intelligence 102(1), 1998: 97–141.
Avron, A., J. Ben-Naim, and B. Konikowska, “Cut-free ordinary sequent calculi for logics having generalized finite-valued semantics”, Logica Universalis 1(1), 2006: 41–69.
Belnap, N., “How computers should think”, pages 30–56 in G. Ryle (ed.), Contemporary Aspects of Philosophy, Oriol Press, 1976.
Béziau, J.-Y., “A new four-valued approach to modal logic”, Logique et Analyse 54(213), 2011: 109–121.
Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge University Press, 2001.
Caleiro, C., W. A. Carnielli, M. Coniglio, and J. Marcos, “Two’s company: ‘The humbug of many logical values’ ”, pages 169–189 in J.-Y. Béziau (ed.),Logica Universalis, Basel: Birkhäuser, 2005.
Caleiro, C., and J. Marcos, “ Classic-like analytic tableaux for finite-valued logics”, pages 268–280 in H. Ono, M. Kanazawa and R. de Queiroz (eds.), Logic, Language, Information And Computation, Lecture Notes in Computer Science, vol. 5514, Springer, 2009.
Cantú, L. M., and M. Figallo, “Cut-free sequent-style systems for a logic associated to involutive Stone algebras”, Journal of Logic and Computation 33(7), 2023: 1684–1710. DOI: http://dx.doi.org/10.1093/logcom/exac061
Carnielli, W. A., M. E. Coniglio, D. Gabbay, P. Gouveia and C. Sernadas, Analysis and Synthesis of Logics, vol. 35 in the Applied Logic Series, Springer, 2008.
Carnielli, W. A., M. E. Coniglio and J. Marcos, J., “Logics of formal inconsistency”, pages 1–93 in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, vol. 14, Springer, 2007.
Carnielli, W. A., and J. Marcos, “A taxonomy of C-systems”, pages 1–94 in W. A. Carnielli, M. E. Coniglio and I. M. L. D’Ottaviano (eds.), Paraconsistency: The Logical Way to the Inconsistent, volume 228 of “Lecture Notes in Pure and Applied Mathematics”, Marcel Dekker, New York, 2002.
Carnielli,W.A., and A. Rodrigues, “An epistemic approach to paraconsistency: A logic of evidence and truth”, Synthese 196(9), 2017: 3789–3813.
Coniglio, M., and M. Figallo, “Hilbert-style presentations of two logics associated to tetravalent modal algebras”, Studia Logica 102(3), 2014: 525–539.
da Costa, N. C. A., Inconsistent Formal Systems (in Portuguese), Habilitation Thesis, 1963. Republished by Editora UFPR, Curitiba, 1993.
da Costa, N. C. A., “Calculs propositionnel pour les systèmes formels inconsistants”, Comptes Rendus de l’Académie de Sciences de Paris, série A, vol. 257, 1963: 3790–3792.
Figallo, M., “Cut-free sequent calculus and natural deduction for the tetravalent modal logic”, Studia Logica 109(6), 2021: 1347–1373. DOI: http://dx.doi.org/10.1007/s11225-021-09944-3
Figallo, A. V., and P. Landini, “On generalized I-algebras and 4-valued modal algebras”, Reports on Mathematical Logic 29, 1995: 3–18.
Figallo, A. V., and A. Ziliani, “Symmetric tetra-valued modal algebras”, Notas Soc. Mat. Chile 10(1), 1991: 133–141.
Font, J. M., and M. Rius, “A four-valued modal logic arising from Monteiro’s last algebras”, pages 85–92 in Proc. 20th Int. Symp. Multiple-Valued Logic (Charlotte, 1990), The IEEE Computer Society Press, 1991.
Font, J. M., and M. Rius, “An abstract algebraic logic approach to tetravalent modal logics”, The Journal of Symbolic Logic 65(2), 2000: 481–518.
Gastaminza, M. L., and S. Gastaminza, “Characterization of a De Morgan lattice in terms of implication and negation”, Proc. Japan Acad. 44(7), 1968: 659–662.
Jansana, R., “Propositional consequence relations and algebraic logic, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Spring 2011 Edition). http://plato.stanford.edu/archives/spr2011/entries/consequence-algebraic/
Lemmon, E. J., and D. Scott, An Introduction to Modal Logic. The Lemmon Notes, K. Segerberg (ed.), vol. 11 of American Philosophical Quarterly Monograph series, Basil Blackwell, Oxford, 1977.
Loureiro, I., “Álgebras modais tetravalentes”, PhD thesis, Faculdade de Ciências de Lisboa, 1983.
Loureiro, I., “Homomorphism kernels of a tetravalent modal algebra” Portugaliae Mathematica 39, 1980: 371–377.
Montgomery, H., and R. Routley, “Contingency and non-contingency bases for normal modal logics”, Logique et Analyse 9(35/36), 1966: 318–328.
Odintsov, S. P., and H. Wansing, “Modal logics with Belnapian truth values”, Journal of Applied Non-Classical Logics 20(3), 2010: 279–301.
Odintsov, S. P., and H. Wansing, ‘Disentangling FDE-based paraconsistent modal logics, Studia Logica 105(6), 2017: 1221-–1254.
Priest, G.. “Many-valued modal logics: A simple approach”, The Review of Symbolic Logic 1(2), 2008: 190–203.
Rivieccio, U., A. Jung A and R. Jansana, “Four-valued modal logic: Kripke semantics and duality”, Journal of Logic and Computation, 27(1), 2015: 155–199.
Smullyan, R. M., First-Order Logic, Berlin: Springer-Verlag, 1968. Corrected republication by Dover Publications, New York, 1995.
Troelstra, A. S., and H. Schwichtenberg, Basic Proof System, Cambridge, UK: Cambridge University Press, 1996.
Ziliani, A., “Algebras de De Morgan modales 4-valuadas monádicas”, PhD thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina, 2001.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2024 Marcelo E. Coniglio, Martin Figallo

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 488
Liczba cytowań: 0