Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

On Some Meta-Theoretic Topological Features of the Region Connection Calculus
  • Strona domowa
  • /
  • On Some Meta-Theoretic Topological Features of the Region Connection Calculus
  1. Strona domowa /
  2. Archiwum /
  3. Tom 32 Nr 4 (2023): Grudzień /
  4. Artykuły

On Some Meta-Theoretic Topological Features of the Region Connection Calculus

Autor

  • Nathaniel Gan National University of Singapore https://orcid.org/0000-0002-9463-7955

DOI:

https://doi.org/10.12775/LLP.2023.002

Słowa kluczowe

region connection calculus, mereotopology, topology, mereology

Abstrakt

This paper examines several intended topological features of the Region Connection Calculus (RCC) and argues that they are either underdetermined by the formal theory or given by the complement axiom. Conditions are identified under which the axioms of RCC are satisfied in topological models under various set restrictions. The results generalise previous results in the literature to non-strict topological models and across possible interpretations of connection. It is shown that the intended interpretation of connection and the alignment of self-connection with topological connection are underdetermined by the axioms of RCC, which suggests that additional axioms are necessary to secure these features. It is also argued that the complement axiom gives RCC models much of their topological structure. In particular, the incompatibility of RCC with interiors is argued to be given by the complement axiom.

Bibliografia

Asher, N., and L. Vieu, “Toward a geometry of common sense: A semantics and a complete axiomatization of mereotopology”, Proceedings of the International Joint Conference on Artificial Intelligence, 1995.

Aurnague, M., and L. Vieu, “A three-level approach to the semantics of space”, pages 393–440 in C. Zelinsky-Wibbelt (ed.), The Semantics of Prepositions: From Mental Processing to Natural Language Processing, Berlin, Boston: Mouton de Gruyter, 1993. DOI: http://dx.doi.org/10.1515/9783110872576.393

Bennett, B., “Spatial reasoning with propositional logics”, Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International Conference, 1994: 51–62. DOI: http://dx.doi.org/10.1016/B978-1-4832-1452-8.50102-0

Bittner, T., and J. Stell, “A boundary-sensitive approach to qualitative location”, Annals of Mathematics and Artificial Intelligence, 24 (1998): 93–114. DOI: http://dx.doi.org/10.1023/A:1018945131135

Casati, R., and A. C. Varzi, Parts and Places: The Structures of Spatial Representations, Massachusetts: MIT Press, 1999.

Clarke, B. L., “A calculus of individuals based on ‘connection’ ”, Notre Dame Journal of Formal Logic, 22, 3 (1981): 204–218. DOI: http://dx.doi.org/10.1305/ndjfl/1093883455

Clarke, B. L., “Individuals and points”, Notre Dame Journal of Formal Logic, 26, 1 (1985): 61–75. DOI: http://dx.doi.org/10.1305/ndjfl/1093870761

Clementini, F., J. Sharma, and M. Egenhofer, “Modelling topological spatial relations: Strategies for query processing”, Computers and Graphics, 18, 6 (1994): 815–822. DOI: http://dx.doi.org/10.1016/0097-8493(94)90007-8

Cohn, A. G., “A hierarchical representation of qualitative shape based on connection and convexity”, pages 311–326 in A. Frank (ed.), International Conference on Spatial Information Theory, Springer Verlag, 1995. DOI: http://dx.doi.org/10.1007/3-540-60392-1_20

Cohn, A. G., “Calculi for qualitative spatial reasoning”, International Conference on Artificial Intelligence and Symbolic Mathematical Computing, 1996: 124–143. DOI: http://dx.doi.org/10.1007/3-540-61732-9_54"> http://dx.doi.org/10.1007/3-540-61732-9_54

Cohn, A. G., B. Bennett, J. Gooday, and N. M. Gotts, “Qualitative spatial representation and reasoning with the region connection calculus”, GeoInformatica, 1 (1997): 275–316. DOI: http://dx.doi.org/10.1023/A:1009712514511

Cohn, A. G., B. Bennett, J. Gooday, and N. M. Gotts, “Representing and reasoning with qualitative spatial relations about regions”, pages 97–134 in O. Stock (ed.), Spatial and Temporal Reasoning, Dordrecht: Springer, 1997. DOI: http://dx.doi.org/10.1007/978-0-585-28322-7_4

Cohn, A. G., and N. M. Gotts, “The ‘egg-yolk’ representation of regions with indeterminate boundaries”, pages 131–150 in C. Eschenbach, C. Habel, and B. Smith (eds.), Topological Foundations of Cognitive Science: Papers From the Workshop at the 1st International Summer Institute in Cognitive Science, 1994.

Cohn, A. G., D. A. Randell, and Z. Cui, “Taxonomies of logically defined qualitative spatial regions”, International Journal of Human Computer Studies, 43 (1995): 831–846. DOI: http://dx.doi.org/10.1006/ijhc.1995.1077

Cohn, A. G., D. A. Randell, Z. Cui, and B. Bennett, “Qualitative spatial reasoning and representation”, pages 513–522 in N. P. Carrete and M. G. Singh (eds.), Qualitative Reasoning and Decision Technologies, Barcelona: CIMNE, 1993.

Cui, Z., A. G. Cohn, and D. A. Randell, “Qualitative simulation based on a logical formalism of space and time”, Proceedings of the 10th National Conference on Artificial Intelligence, 1992: 679–684.

Cui, Z., A. G. Cohn, and D. A. Randell, “Qualitative and topological relationships in spatial databases”, pages 293–315 in D. Abel and B. C. Ooi (eds.), Advances in Spatial Databases, Vol. 692, Berlin: Springer Verlag, 1993. DOI: http://dx.doi.org/10.1007/3-540-56869-7_17

Dimov, G. and D. Vakarelov, “Contact algebras and region based theory of space: A proximity approach”, Fundamenta Informaticae, 74, 2–3 (2006): 209–249.

Dimov, G., and D. Vakarelov, “Contact algebras and region based theory of space: A proximity approach”, Fundamenta Informaticae, 74, 2–3 (2006): 251–282.

Düntsch, I., and M. Winter, “A representation theorem for Boolean contact algebras”, Theoretical Computer Science, 347 (2005): 498–512. DOI: http://dx.doi.org/10.1016/j.tcs.2005.06.030

Egenhofer, M., and D. Mark, “Naive geography”, pages 1–16 in A. U. Frank and W. Kuhn (eds.), Spatial Information Theory: A Theoretical Basis for GIS, Berlin: Springer-Verlag, 1995. DOI: http://dx.doi.org/10.1007/3-540-60392-1_1

Fujihara, H., and A. Mukerjee, “Qualitative reasoning about document design”, Technical report, Texas University, 1991.

Gooday, J. M., and A. G. Cohn, “Using spatial logic to describe visual languages”, Artificial intelligence Review, 10 (1996): 171–186. DOI: http://dx.doi.org/10.1007/BF00127678

Gotts, N. M, “How far can we ‘C’? Defining a ‘doughnut’ using connection alone”, Principles of Knowledge Representation and Reasoning: Proceedings of the 4th International Conference, 1994: 246–257. DOI: http://dx.doi.org/B978-1-4832-1452-8.50119-6

Gotts, N. M., “An axiomatic approach to topology for spatial information systems”, Technical report, University of Leeds, 1996.

Gotts, N. M., J. M. Gooday, and A. G. Cohn, “A connection based approach to common-sense topological description and reasoning”, The Monist, 79, 1 (1996): 51–75. DOI: http://dx.doi.org/10.5840/monist19967913

Kuipers, B. J., and T. S. Levitt, “Navigating and mapping in large-scale space”, AI Magazine, 9, 2 (1988): 25–43. DOI: http://dx.doi.org/10.1609/aimag.v9i2.674

Lehmann, F., and A. G. Cohn, “The EGG/YOLK reliability hierarchy: Semantic data integration using sorts with prototypes”, Proceedings of the Third International Conference on Information and Knowledge Management, 1994: 272–279. DOI: http://dx.doi.org/10.1145/191246.191293

Li, S., and M. Ying, “Region connection calculus: Its models and composition table”, Artificial Intelligence, 145 (2003): 121–146. DOI: http://dx.doi.org/10.1016/S0004-3702(02) 0372-7

Li, S., and M. Ying, “Generalized region connection calculus”, Artificial Intelligence, 160 (2004): 1–34. DOI: http://dx.doi.org/10.1016/j.artint.2004.05.012

Li, S., M. Ying, and Y. Li, “On countable RCC models”, Fundamenta Informaticae, 20 (2006): 1–23.

Liu, W., and S. Li, “On standard models of fuzzy region connection calculus”, International Journal of Approximate Reasoning, 52, 9 (2011): 1337–1354. DOI: http://dx.doi.org/10.1016/j.ijar.2011.07.001

Randell, D. A., and A. G. Cohn, “Modelling topological and metrical properties in physical processes”, International Conference on Principles of Knowledge Representation and Reasoning, 1989.

Randell, D. A., and A. G. Cohn, “Exploiting lattices in a theory of space and time”, Computers and Mathematics with Applications, 23 (1992): 459–476. DOI: http://dx.doi.org/10.1016/0898-1221(92)90118-2

Randell, D. A., Z. Cui, and A. G. Cohn, “A spatial logic based on regions and connection”, Proceedings of the Third International Conference on Principles of Knowledge Representation and Reasoning, 1992: 165–176.

Stell, J. G., “Boolean connection algebras: A new approach to the regionconnection calculus”, Artificial Intelligence, 122, 1–2 (2000): 111–136. DOI: http://dx.doi.org/10.1016/S0004-3702(00)00045-X

Stell, J. G., and M. F. Worboys, “The algebraic structure of sets of regions”, Spatial Information Theory: A Theoretical Basis for GIC, International Conference COSIT ’97, 1997: 163–174. DOI: http://dx.doi.org/10.1007/3-540-63623-4_49

Whitehead, A. N., Process and Reality, New York: Macmillan, 1929.

Winter, S., “Topology in raster and vector representation”, GeoInformatica, 4 (2000): 35–65. DOI: http://dx.doi.org/10.1023/A:1009828425380

Worboys, M., “Imprecision in finite resolution spatial data”, GeoInformatica, 2 (1998): 257–279. DOI: http://dx.doi.org/10.1023/A:1009769705164

Xia, L., and S. Li, “On minimal models of the region connection calculus”, Fundamenta Informaticae, 69, 4 (2006): 1–20.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

06.04.2023

Jak cytować

1.
GAN, Nathaniel. On Some Meta-Theoretic Topological Features of the Region Connection Calculus. Logic and Logical Philosophy [online]. 6 kwiecień 2023, T. 32, nr 4, s. 639–669. [udostępniono 8.7.2025]. DOI 10.12775/LLP.2023.002.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 32 Nr 4 (2023): Grudzień

Dział

Artykuły

Licencja

Prawa autorskie (c) 2023 Nathaniel Gan

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 1038
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

region connection calculus, mereotopology, topology, mereology
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa