Applications of Relating Semantics
From non-classical logics to philosophy of science
DOI:
https://doi.org/10.12775/LLP.2022.002Słowa kluczowe
Boolean connexive logic, modal Boolean connexive logic, relating logic, relating semantics, non-classical logic, philosophy of science, pragmaticsAbstrakt
Here, we discuss logical, philosophical and technical problems associated to relating logic and relating semantics. To do so, we proceed in three steps. The first step is devoted to providing an introduction to both relating logic and relating semantics. We discuss this problem on the example of different languages. Second, we address some of the main research directions and their philosophical applications to non-classical logics, particularly to connexive logics. Third, we discuss some technical problems related to relating semantics, and its application to philosophy of science, language and pragmatics.
Bibliografia
Epstein, R. L., 1979, “Relatedness and implication”, Philosophical Studies 36 (2): 137–173. DOI: https://doi.org/10.1007/BF00354267
Epstein, R. L. (with the assistance and collaboration of: W. Carnielli, I. D’Ottaviano, S. Krajewski, R. Maddux), 1990, The Semantic Foundations of Logic. Volume 1: Propositional Logics, Springer Science+Business Media: Dordrecht. DOI: https://doi.org/10.1007/978-94-009-0525-2
Estrada-González, L., A. Giordani, T. Jarmużek, M. Klonowski, I. Sedlár and A. Tedder, 2021, “Incorporating the relation into the language? A survey of approaches in relating logic”, Logic and Logical Philosophy 30 (4): 711–739. DOI: https://doi.org/10.12775/LLP.2021.014
Jarmużek, T., 2021, “Relating semantics as fine-grained semantics for intensional propositional logics”, pages 13–30 in A. Giordani, J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_2
Jarmużek, T., and B. Kaczkowski, 2014, “On some logic with a relation imposed on formulae: tableau system F”, Bulletin of the Section of Logic 43 (1/2): 53–72.
Jarmużek, T., and M. Klonowski, 2020, “On logics of strictly-deontic modalities. A semantic and tableau approach”, Logic and Logical Philosophy 29 (3): 335–380. DOI: https://doi.org/10.12775/LLP.2020.010
Jarmużek, T., and M. Klonowski, 2021, “Some intensional logics defined by relating semantics and tableau systems”, pages 31–48 in A. Giordani, J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_3
Jarmużek, T., and M. Klonowski, submitted, “Classical mono-relating logic. Theory and axiomatization”.
Jarmużek, T., and J. Malinowski, 2019a, “Boolean connexive logics: semantics and tableau approach”, Logic and Logical Philosophy 28 (3): 427–448. DOI: https://doi.org/10.12775/LLP.2019.003
Jarmużek, T., and J. Malinowski, 2019b, “Modal Boolean connexive logics: semantics and tableau approach”, Bulletin of the Section of Logic 48 (3): 213–243. DOI: https://doi.org/10.18778/0138-0680.48.3.05
Jarmużek, T., and F. Paoli, 2021, “Relating logic and relating semantics. History, philosophical applications and some of technical problems”, Logic and Logical Philosophy 30 (4): 563–577. DOI: https://doi.org/10.12775/LLP.2021.025
Klonowski, M., 2018, “A Post-style proof of completeness theorem for Symmetric Relatedness Logic S”, Bulletin of the Section of Logic 47 (3): 201–214. DOI: https://doi.org/10.18778/0138-0680.47.3.05
Klonowski, M., 2019, “Aksjomatyzacja monorelacyjnych logik wiążących” (Axiomatization of monorelational relating logics), PhD thesis, Nicolaus Copernicus University in Toruń.
Klonowski, M., 2021a, “Axiomatization of some basic and modal Boolean connexive logics”, Logica Universalis 15 (4): 517–536. DOI: https://doi.org/10.1007/s11787-021-00291-4
Klonowski, M., 2021b, “History of relating logic. The origin and research directions” Logic and Logical Philosophy 30 (4): 579–629. DOI: https://doi.org/10.12775/LLP.2021.021
Ledda, A., F. Paoli, and M. P. Baldi, 2019, “Algebraic analysis of demodalised analytic implication”, Journal of Philosophical Logic 48: 957–979. DOI: https://doi.org/10.1007/s10992-019-09502-2
Malinowski, J., and R. Palczewski, 2021, “Relating semantics for connexive logic”, pages 49–65 in A. Giordani, J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_4
Paoli, F., 1993, “Semantics for first degree relatedness logic”, Reports on Mathematical Logic 27: 81–94.
Paoli, F., 1996, “S is constructively complete”, Reports on Mathematical Logic 30: 31–47.
Paoli, F., 2007, “Tautological entailments and their rivals”, pages 153–175 in J.-Y. Béziau, W. A. Carnielli and D. M. Gabbay (eds.), Handbook of Paraconsistency, College Publications: London.
Paoli, F., M. P. Baldi and D. Szmuc, 2021, “Pure variable inclusion logics” Logic and Logical Philosophy 30 (4): 631–652. DOI: https://doi.org/10.12775/LLP.2021.015
Walton, D. N., 1979a, “Philosophical basis of relatedness logic”, Philosophical Studies 36 (2): 115–136. DOI: https://doi.org/10.1007/BF00354266
Walton, D. N., 1979b, “Relatedness in intensional action chains”, Philosophical Studies 36 (2): 175–223. DOI: https://doi.org/10.1007/BF00354268
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2022 Tomasz Jarmużek, Francesco Paoli
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 3120
Liczba cytowań: 0