Relating Logic and Relating Semantics. History, Philosophical Applications and Some of Technical Problems
DOI:
https://doi.org/10.12775/LLP.2021.025Słowa kluczowe
: relating logic, relating semantics, logic of variable inclusion, history of relating logic, epistemic logic, deontic logic, incorporating relationAbstrakt
KKKKKKKKK
Bibliografia
Epstein, R. L., 1979, “Relatedness and implication”, Philosophical Studies 36: 137–173. DOI: https://doi.org/10.1007/BF00354267
Epstein, R. L., 1987, “The algebra of dependence logic”, Reports on Mathematical Logic 21: 19–34.
Epstein, R. L. (with the assistance and collaboration of: W. Carnielli, I. D’Ottaviano, S. Krajewski, R. Maddux), 1990, The Semantic Foundations of Logic. Volume 1: Propositional Logics, Springer Science+Business Media: Dordrecht. DOI: https://doi.org/10.1007/978-94-009-0525-2
Jarmużek, T., 2021, “Relating semantics as fine-grained semantics for intensional propositional logics”, pages 13–30 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_2
Jarmużek, T., and B. Kaczkowski, 2014, “On some logic with a relation imposed on formulae: tableau system F”, Bulletin of the Section of Logic 43(1/2): 53–72.
Jarmużek, T., and M. Klonowski, 2020, “On logics of strictly-deontic modalities. A semantic and tableau approach”, Logic and Logical Philosophy 29(3): 335–380. DOI: https://doi.org/10.12775/LLP.2020.010
Jarmużek, T., and M. Klonowski, 2021, “Some intensional logics defined by relating semantics and tableau systems”, pages 31–48 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_3
Jarmużek, T., and M. Klonowski, submitted, “Classical mono-relating logic. Theory and axiomatization”. Jarmużek, T., and M. Klonowski, manuscript, “Axiomatizing Boolean logics with relating implication defined by positive relational properties”.
Jarmużek, T., and J. Malinowski, 2019a, “Boolean connexive logics: semantics and tableau approach”, Logic and Logical Philosophy 28(3): 427–448. DOI: https://doi.org/10.12775/LLP.2019.003
Jarmużek, T., and J. Malinowski, 2019b, “Modal Boolean connexive logics: semantics and tableau approach”, Bulletin of the Section of Logic 48 (3): 213–243. DOI: https://doi.org/10.18778/0138-0680.48.3.05
Klonowski, M., 2018, “A Post-style proof of completeness theorem for Symmetric Relatedness Logic S”, Bulletin of the Section of Logic 47 (3): 201–214. DOI: https://doi.org/10.18778/0138-0680.47.3.05
Klonowski, M., 2019, “Aksjomatyzacja monorelacyjnych logik wiążących” (“Axiomatization of monorelational relating logics”), PhD thesis, Nicolaus Copernicus University in Toruń.
Klonowski, M., 2021, “Axiomatization of some basic and modal Boolean connexive logics”, Logica Universalis. DOI: https://doi.org/10.1007/s11787-021-00291-4
Ledda, A., F. Paoli, and M. P. Baldi, 2019, “Algebraic analysis of demodalised analytic implication”, Journal of Philosophical Logic 48: 957–979. DOI: https://doi.org/10.1007/s10992-019-09502-2
Malinowski, J., and R. Palczewski, 2021, “Relating semantics for connexive logic”, pages 49–65 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_4
Paoli, F., 1993, “Semantics for first degree relatedness logic”, Reports on Mathematical Logic 27: 81–94.
Paoli, F., 1996, “S is constructively complete”, Reports on Mathematical Logic 30: 31–47.
Paoli, F., 2007, “Tautological entailments and their rivals”, pages 153–175 in J. Y. Béziau, W. A. Carnielli and D. M. Gabbay (eds.), Handbook of Paraconsistency, College Publications: London.
Walton, D. N., 1979a, “Philosophical basis of relatedness logic”, Philosophical Studies 36 (2): 115–136. DOI: https://doi.org/10.1007/BF00354266
Walton, D. N., 1979b, “Relatedness in intensional action chains”, Philosophical Studies 36 (2): 175–223. DOI: https://doi.org/10.1007/BF00354268
Walton, D. N., 1982, Topical Relevance in Argumentation, John Benjamins Publishing Company: Amsterdam–Philadelphia. DOI: https://doi.org/10.1075/pb.iii.8
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2021 Tomasz Jarmużek, Francesco Paoli
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 986
Liczba cytowań: 0