Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

A Note on Gödel, Priest and Naïve Proof
  • Home
  • /
  • A Note on Gödel, Priest and Naïve Proof
  1. Home /
  2. Archives /
  3. Vol. 30 No. 1 (2021): March /
  4. Articles

A Note on Gödel, Priest and Naïve Proof

Authors

  • Massimiliano Carrara FISPPA Department, Section of Philosophy, University of Padua, Padova
  • Enrico Martino FISPPA Department, Section of Philosophy, University of Padua, Padova

DOI:

https://doi.org/10.12775/LLP.2020.017

Keywords

incompleteness, standard model, naïve proof, dialetheia, liar paradox, Curry’s paradox

Abstract

In the 1951 Gibbs lecture, Gödel asserted his famous dichotomy, where the notion of informal proof is at work. G. Priest developed an argument, grounded on the notion of naïve proof, to the effect that Gödel’s first incompleteness theorem suggests the presence of dialetheias. In this paper, we adopt a plausible ideal notion of naïve proof, in agreement with Gödel’s conception, superseding the criticisms against the usual notion of naïve proof used by real working mathematicians. We explore the connection between Gödel’s theorem and naïve proof so understood, both from a classical and a dialetheic perspective.

References

Beall, J., and J. Murzi, 2013, “Two flavors of Curry’s paradox”, The Journal of Philosophy 110 (3): 143–65. DOI: http://dx.doi.org/10.5840/jphil2013110336

Berto, F., 2009, “The Gödel paradox and Wittgenstein’s reasons”, Philosophia Mathematica 17: 208–219. DOI: http://dx.doi.org/10.1093/philmat/nkp001

Caret, C.R., and Z Weber, (2015, “A note on contraction-free logic for validity”, Topoi 34 (1): 63–74. DOI: http://dx.doi.org/10.1007/s11245-014-9241-z

Carrara, M., S. Gaio and E. Martino, 2010, “Can Priest’s dialetheism avoid trivialism?”, pages 53–64 in M. Peliš and V. Punčochoř (eds.), The Logica Yearbook, College Publications: London.

Carrara, M., and E. Martino, 2011, “Curry’s paradox. A new argument for trivialism”, Logic and Philosophy of Science 9: 199–206.

Chihara, C.S., 1984, “Priest, the liar, and Gödel”, Journal of Philosophical Logic 13 (2): 117–124. DOI: http://dx.doi.org/10.1007/BF00453016

Cobreros, P., P. Egré, D. Ripley and van R. Rooij, 2012, “Tolerant, classical, strict”, Journal of Philosophical Logic 41 (2): 347–85. DOI: http://dx.doi.org/10.1007/s10992-010-9165-z

Cobreros, P., P. Égré, D. Ripley, and van R. Rooij, 2013, “Reaching transparent truth”, Mind 122 (488): 841–866. DOI: http://dx.doi.org/10.1093/mind/fzt110

Dummett, M., 1978, Truth and Other Enigmas, Duckworth: London.

Field, H., 2008, Saving Truth from Paradox, Oxford University Press: Oxford.

Fitch, F., 1942, “A basic logic”, Journal of Symbolic Logic 7: 105–14. DOI: http://dx.doi.org/10.2307/2269291

Fitch, F., 1948, “An extension of basic logic”, Journal of Symbolic Logic 13:95–106. DOI: http://dx.doi.org/10.2307/2267330

Fitch, F., 1950, “A further consistent extension of basic logic”, Journal of Symbolic Logic 14: 209–18. DOI: http://dx.doi.org/10.2307/2269228

Gödel, K., 1951, “Some basic theorems in the foundations of mathematics and their implications”, pages 304–323 in S. Feferman et. al. (eds.), Collected Works, volume III, Oxford University Press: Oxford.

Hilbert, D, 1976, “Mathematische probleme, vortrag, gehalten auf dem internationalen mathematiker kongress zu paris” (1900), pages 1–34 in F. Browder (ed.), Proceedings of Symposia in Pure Mathematics, volume 28, American Mathematical Society, Providence.

Lucas, J.R, 1961, “Minds, machines, and Goedel”, Philosophy 36: 112–137.

Mares, E., and F. Paoli, 2014, “Logical consequence and the paradoxes”, Journal of Philosophical Logic 43: 439–469. DOI: http://dx.doi.org/10.1007/s10992-013-9268-4

Martin-Löf, P., 1995, “Verificationism then and now”, pages 187–196 in M. van der Schaar (ed.), The Foundational Debate: Complexity and Constructivity in Mathematics and Physics, “Vienna Circle Institute Yearbook 3”, Kluwer: Dordrecht.

Murzi, J., and M. Carrara (eds.), 2015a, “Paradox and logical revision”, Topoi, volume 34.

Murzi, J., and M. Carrara, 2015b, “Paradox and logical revision: A short introduction”, Topoi 34: 7–14. DOI: http://dx.doi.org/10.1007/s11245-014-9286-z

Murzi, J., and L. Shapiro, 2014, “Validity and truth-preservation”, pages 431–460 in T. Achourioti, H. Galinon, J. Martinez-Fernandez and F. Fujimoto (eds.), Unifying the Philosophy of Truth, Springer: Berlin. DOI: http://dx.doi.org/10.1007/978-94-017-9673-6_22

Penrose, R., 1994, Shadows of the Mind, Oxford University Press: Oxford.

Priest, G., 1979, “The logic of paradox”, Journal of Philosophical Logic 8: 219–241. DOI: http://dx.doi.org/10.1007/BF00258428

Priest, G., 1994, “Is arithmetic consistent?”, Mind 103: 337–349. DOI: http://dx.doi.org/10.1093/mind/103.411.337

Priest, G., 2006, In Contradiction, Oxford University Press: Oxford. Expanded edition (first published 1987, Kluwer: Dordrecht).

Priest, G., 2015, “Fusion and confusion”, Topoi 34 (1): 55–61. DOI: http://dx.doi.org/10.1007/s11245-013-9175-x

Priest, G., 2019, “Some comments and replies”, pages 575–675 in C. Başkent and T.M. Ferguson (eds.), Graham Priest on Dialetheism and Paraconsistency, Springer: Berlin. DOI: http://dx.doi.org/10.1007/978-3-030-25365-3_27

Ripley, D., 2013, “Paradoxes and failures of cut”, Australasian Journal of Philosophy 91 (1): 139–164. DOI: http://dx.doi.org/10.1080/00048402.2011.630010

Ripley, D., 2015a, “Anything goes”, Topoi 34 (1): 25–36. DOI: http://dx.doi.org/10.1007/s11245-014-9261-8

Ripley, D., 2015b, “Comparing substructural theories of truth”, Ergo 2: 299–328. DOI: http://dx.doi.org/10.3998/ergo.12405314.0002.013

Shapiro, L., 2011, “Deflating logical consequence”, The Philosophical Quarterly 61: 320–342. DOI: http://dx.doi.org/10.1111/j.1467-9213.2010.678.x

Shapiro, L., 2013, “Validity Curry strengthened”, Thought 2: 100–107. DOI: http://dx.doi.org/10.1002/tht3.80

Shapiro, S., 2002, “Incompleteness and inconsistency”, Mind 111: 817–832. DOI: http://dx.doi.org/10.1093/mind/111.444.817

Shapiro, S., 2019, “Inconsistency and incompleteness, revisited”, pages 469–479 in C. Başkent and T.M. Ferguson (eds.), Graham Priest on Dialetheism and Paraconsistency, Springer: Berlin. DOI: http://dx.doi.org/10.1007/978-3-030-25365-3_22

Smiley, T., 1957, “Entailment and deducibility”, Proceedings of the Aristotelian Society 59: 233–254.

Tanswell, F.S., 2016, “Saving proof from paradox: Gödel’s paradox and the inconsistency of informal mathematics”, pages 159–173 in H. Andreas and P. Verdée (eds.), Logical Studies of Paraconsistent Reasoning in Science and Mathematics, Springer: Berlin. DOI: http://dx.doi.org/10.1007/978-3-319-40220-8_11

Weber, Z., 2014, “Naïve validity”, Philosophical Quarterly 64 (254): 99–114. DOI: http://dx.doi.org/10.1093/pq/pqt016

Weir, A., 2005, “Naïve truth and sophisticated logic”, pages 218–249 in J. Beall and B. Armour-Garb (eds.), Deflationism and Paradox, Oxford University Press: Oxford.

Whittle, B., 2004, “Dialetheism, logical consequence and hierarchy”, Analysis 64 (4): 318–326. DOI: http://dx.doi.org/10.1093/analys/64.4.318

Zardini, E., 2011, “Truth without contra(di)ction”, Review of Symbolic Logic 4: 498–535. DOI: http://dx.doi.org/10.1017/S1755020311000177

Zardini, E., 2012, “Näive modus ponens”, Journal of Philosophical Logic 42 (4): 575–593. DOI: http://dx.doi.org/10.1007/s10992-012-9239-1

Zardini, E., 2013a, “It is not the case that [p and ‘it is not the case that p’ is true] nor is it the case that [p and ‘p’ is not true]”, Thought 1 (4): 309–319.

Zardini, E., 2013b, “Näive logical properties and structural properties”, The Journal of Philosophy 110 (11): 633–644. DOI: http://dx.doi.org/10.5840/jphil2013110118

Zardini, E., 2015, “Getting one for two, or the contractors’ bad deal. Towards a unified solution to the semantic paradoxes”, pages 461-493 in T. Achourioti, H. Galinon, J. Martinez-Fernandez and F. Fujimoto (eds.), Unifying the Philosophy of Truth, Springer: Berlin. DOI: http://dx.doi.org/10.1007/978-94-017-9673-6_23

Logic and Logical Philosophy

Downloads

  • PDF

Published

2020-10-15

How to Cite

1.
CARRARA, Massimiliano and MARTINO, Enrico. A Note on Gödel, Priest and Naïve Proof. Logic and Logical Philosophy. Online. 15 October 2020. Vol. 30, no. 1, pp. 79-96. [Accessed 6 July 2025]. DOI 10.12775/LLP.2020.017.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 30 No. 1 (2021): March

Section

Articles

Stats

Number of views and downloads: 681
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

incompleteness, standard model, naïve proof, dialetheia, liar paradox, Curry’s paradox
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop