Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Connexive Extensions of Regular Conditional Logic
  • Home
  • /
  • Connexive Extensions of Regular Conditional Logic
  1. Home /
  2. Archives /
  3. Vol. 28 No. 3 (2019): September /
  4. Articles

Connexive Extensions of Regular Conditional Logic

Authors

  • Yale Weiss The Graduate Center, CUNY

DOI:

https://doi.org/10.12775/LLP.2018.012

Keywords

conditional logic, connexive logic, conditional obligation, deontic logic

Abstract

The object of this paper is to examine half and full connexive extensions of the basic regular conditional logic CR. Extensions of this system are of interest because it is among the strongest well-known systems of conditional logic that can be augmented with connexive theses without inconsistency resulting. These connexive extensions are characterized axiomatically and their relations to one another are examined proof-theoretically. Subsequently, algebraic semantics are given and soundness, completeness, and decidability are proved for each system. The semantics is also used to establish independence results. Finally, a deontic interpretation of one of the systems is examined and defended.

References

Chellas, B.F., “Basic conditional logic”, Journal of Philosophical Logic 4, 2 (1975): 133-153. DOI: 10.1007/BF00693270

Chellas, B.F., Modal Logic, Cambridge University Press, 1980. DOI: 10.1017/CBO9780511621192

Lemmon, E.J., “New foundations for Lewis modal systems”, Journal of Symbolic Logic 22, 2 (1957): 176–186. DOI: 10.2307/2964179

Lewis, D., 1973, Counterfactuals, Oxford University Press.

Lowe, E.J., “A simplification of the logic of conditionals”, Notre Dame Journal of Formal Logic 24, 3 (1983): 357–366. DOI: 10.1305/ndjfl/1093870380

McCall, S., “Connexive implication”, Journal of Symbolic Logic 31, 3 (1966): 415–433. DOI: 10.2307/2270458

Mortensen, C., “Aristotle’s thesis in consistent and inconsistent logics”, Studia Logica 43, 1–2 (1984): 107–116. DOI: 10.1007/BF00935744

Nute, D., Topics in Conditional Logic, D. Reidel Publishing Company, 1980. DOI: 10.1007/978-94-009-8966-5

Pizzi, C., “Boethius’ thesis and conditional logic”, Journal of Philosophical Logic 6, 1 (1977): 283–302. DOI: 10.1007/BF00262063

Pizzi, C., and T. Williamson, “Strong Boethius’ thesis and consequential implication”, Journal of Philosophical Logic 26, 5 (1997): 569–588. DOI: 10.1023/A:1004230028063

Stalnaker, R.C., “A theory of conditionals”, pages 41–55 in W.L. Harper, R. Stalnaker, and G. Pearce (eds.), Ifs, D. Reidel Publishing Company, 1968. DOI: 10.1007/978-94-009-9117-0_2

Unterhuber, M., “Beyond system P – Hilbert-style convergence results for conditional logics with a connexive twist”, IfCoLog Journal of Logics and their Applications 3, 3 (2016): 377–412.

Williamson, T., “Modal logic within counterfactual logic”, pages 81–96 in B. Hale and A. Hoffmann (eds.), Modality: Metaphysics, Logic, and Epistemology, Oxford University Press, 2010. DOI: 10.1093/acprof:oso/9780199565818.003.0005

von Wright, G.H., “A note on deontic logic and derived obligation”, Mind

, 1 (1956): 507–509. DOI: 10.1093/mind/65.1.507

Logic and Logical Philosophy

Downloads

  • PDF

Published

2018-08-16

How to Cite

1.
WEISS, Yale. Connexive Extensions of Regular Conditional Logic. Logic and Logical Philosophy. Online. 16 August 2018. Vol. 28, no. 3, pp. 611-627. [Accessed 5 July 2025]. DOI 10.12775/LLP.2018.012.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 28 No. 3 (2019): September

Section

Articles

Stats

Number of views and downloads: 776
Number of citations: 2

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

conditional logic, connexive logic, conditional obligation, deontic logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop