Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Ultraproduct for Quantum Structures
  • Home
  • /
  • Ultraproduct for Quantum Structures
  1. Home /
  2. Archives /
  3. Vol. 28 No. 1 (2019): March /
  4. Articles

Ultraproduct for Quantum Structures

Authors

  • Morteza Moniri Shahid Beheshti University, Departmet of Mathematics
  • Elahe Shirinkalam Shahid Beheshti University, Departmet of Mathematics

DOI:

https://doi.org/10.12775/LLP.2018.005

Keywords

Quantum Kripke frame, state space, ultraproduct

Abstract

Quantum Kripke frames are certain quantum structures recently introduced by Zhong. He has defined certain properties such as Existence of Approximation and Superposition for these structures. In this paper, we define the ultraproduct for the family of quantum Kripke frames and show that the aforementioned properties are invariant under ultraproduct. In this way we prove that the ultraproduct of each family of quantum Kripke frames is also a quantum Kripke frame. We also show the same results for other related quantum structures.

References

Baltag, A., and S. Smets, “Complete axiomatizationsof quantum actions”, International Journal of Theoretical Physics 44, 12 (2005): 2267–2282. DOI: 10.1007/s10773-005-8022-2

Bergfeld, J.M., K. Kishida, J. Sack, and S. Zhong, “Duality for the logic of quantum actions”, Studia Logica 103, 4 (2015): 781–805. DOI: 10.1007/s11225-014-9592-x

Birkhoff, G., and J. von Neumann, “The logic of quantum mechanics”, Annals of Mathematics 37 (1936): 823–843.

Blackburn, P., F. Wolter, and J. von Benthem, Handbook of Modal Logic, Elsevier, Amesterdam, 2007.

Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge University Press, 2001. DOI: 10.1017/CBO9781107050884

Chang, C., and H. Keisler, Model Theory, North-Holland, Amsterdam, 1973.

Goranko, V., and M. Otto, “Model theory of modal logics”, in P. Blackburn, F. Wolter and J. von Benthem (eds.), Handbook of Modal Logic, Elsevier, Amesterdam, 2006. DOI: 10.1016/S1570-2464(07)80008-5

Hedlkova, J. ., and S. Pulmannova, “Orthogonality spaces and atomistic orthocomplemented lattices”, Czechoslovak Mathematical Journal 41 (1991): 8–23.

Hodges, W., Model Theory, Cambridge University Press, Cambridge, 1993.

Kracht, M., Tools and Techniques in Modal Logic, Elsevier, Amesterdam, 1999.

Piron, C., Foundations of Quantum Physics, W.A. Benjamin Inc., 1976.

Zhong, Sh., Orthogonality and Quantum Geometry, Towards a Relational Reconstruction of Quantum Theory, ILLC Dissertation Series, 2015.

Zhong, Sh., “Correspondence between Kripke frames and projective geometries”, Studia Logica 106, 1 (2018): 167–190. DOI: 10.1007/s11225-017-9733-0

Logic and Logical Philosophy

Downloads

  • PDF

Published

2018-02-26

How to Cite

1.
MONIRI, Morteza and SHIRINKALAM, Elahe. Ultraproduct for Quantum Structures. Logic and Logical Philosophy. Online. 26 February 2018. Vol. 28, no. 1, pp. 157-171. [Accessed 6 July 2025]. DOI 10.12775/LLP.2018.005.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 28 No. 1 (2019): March

Section

Articles

Stats

Number of views and downloads: 719
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

Quantum Kripke frame, state space, ultraproduct
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop