Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Category Free Category Theory and Its Philosophical Implications
  • Home
  • /
  • Category Free Category Theory and Its Philosophical Implications
  1. Home /
  2. Archives /
  3. Vol. 25 No. 4 (2016): December /
  4. Articles

Category Free Category Theory and Its Philosophical Implications

Authors

  • Michael Heller Copernicus Center for Interdisciplinary Studies and The Pontifical University of John Paul II

DOI:

https://doi.org/10.12775/LLP.2016.013

Keywords

category theory, identity, individuality, “philosophy of arrows”

Abstract

There exists a dispute in philosophy, going back at least to Leibniz, whether is it possible to view the world as a network of relations and relations between relations with the role of objects, between which these relations hold, entirely eliminated. Category theory seems to be the correct mathematical theory for clarifying conceptual possibilities in this respect. In this theory, objects acquire their identity either by definition, when in defining category we postulate the existence of objects, or formally by the existence of identity morphisms. We show that it is perfectly possible to get rid of the identity of objects by definition, but the formal identity of objects remains as an essential element of the theory. This can be achieved by defining category exclusively in terms of morphisms and identity morphisms (objectless, or object free, category) and, analogously, by defining category theory entirely in terms of functors and identity functors (categoryless, or category free, category theory). With objects and categories eliminated, we focus on the “philosophy of arrows” and the roles various identities play in it (identities as such, identities up to isomorphism, identities up to natural isomorphism ...). This perspective elucidates a contrast between “set ontology” and “categorical ontology”.

References

Adámek, J., H. Herrlich, and G. Strecker, Abstract and Concrete Categories. The Joy of Cats, katmat.math.uni-bremen.de/acc.pdf (originally published by Wiley and Sons: New York, 1990).

Awodey, S., Category Theory, second edition, Oxford University Press: Oxford, 2011. DOI: 10.1093/acprof:oso/9780198568612.001.0001

Bell, I.L., “From absolute to local mathematics”, Synthese, 69 (1986): 409–426. DOI: 10.1007/BF00413980

Benacerraf, P., “What numbers could not be?”, Philosophical Review, 74, 1 (1965): 47–73. DOI: 10.2307/2183530

Eilenberg, S., and S. Mac Lane, “A general theory of natural equivalences”, Transactions of the American Mathematical Society, 58 (1945): 231–294. DOI: 10.1090/S0002-9947-1945-0013131-6; http://www.ams.org/journals/tran/1945-058-00/S0002-9947-1945-0013131-6/S0002-9947-1945-0013131-6.pdf

French, S., The Structure of the World. Metaphysics and Representation, Oxford University Press: Oxford, 2014. DOI: 10.1093/acprof:oso/9780199684847.001.0001

Goldblatt, R., Topoi. The Categorical Analysis of Logic, revised edition, Dover: Mineola, 1984.

Ladyman, J., “What is structural realism?”, Studies in the History and Philosophy of Science, 29, 3 (1998): 409–424. DOI: 10.1016/S0039-3681(98)80129-5

Lawvere, F.W., “Functorial semantics of algebraic theries and some algebraic problems in the context of functorial semantics of algebraic theories”, 1963. www.tac.mta.ca/tac/reprints/articles/5/tr5.pdf

Resnik, M., Mathematics as a Science of Patterns, Oxford University Press: Oxford, 1997. DOI: 10.1093/0198250142.001.0001

Rodin, A., “Identity and categorification”, Philosophia Scientiae, 11, 2 (2007): 27–65. DOI: 10.4000/philosophiascientiae.333

Rodin, A., Axiomatic Method and Category Theory, Springer: Heidelberg, New York, Dordrecht, London, 2014. DOI: 10.1007/978-3-319-00404-4

Shapiro, S., Philosophy of Mathematics: Structure and Ontology, Oxford University Press: New York, 1997.

Semadeni, Z., Wiweger, A., Wstęp do teorii kategorii i funktorów (In Polish; Introduction to the Theory of Categories and Functors), second edition, PWN: Warszawa, 1978.

Simmons, H., An Introduction to Category Theory, Cambridge University Press: Cambridge, 2011. DOI: 10.1017/CBO9780511863226

Teller, P., An Interpretative Introduction to Quantum Field Theory, Princeton University Press: Princeton, 1995.

Worall, J., “Structural realism: The best of both worlds”, Dialectica, 43, 1–2 (1989): 99–124. DOI: 10.1111/j.1746-8361.1989.tb00933.x

Logic and Logical Philosophy

Downloads

  • PDF

Published

2016-06-14

How to Cite

1.
HELLER, Michael. Category Free Category Theory and Its Philosophical Implications. Logic and Logical Philosophy. Online. 14 June 2016. Vol. 25, no. 4, pp. 447-459. [Accessed 3 July 2025]. DOI 10.12775/LLP.2016.013.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 25 No. 4 (2016): December

Section

Articles

Stats

Number of views and downloads: 732
Number of citations: 4

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

category theory, identity, individuality, “philosophy of arrows”
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop