Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Proof theory of epistemic logic of programs
  • Home
  • /
  • Proof theory of epistemic logic of programs
  1. Home /
  2. Archives /
  3. Vol. 23 No. 3 (2014): September /
  4. Articles

Proof theory of epistemic logic of programs

Authors

  • Paolo Maffezioli University of Groningen
  • Alberto Naibo University of Paris 1 Panthéon-Sorbonne, Paris

DOI:

https://doi.org/10.12775/LLP.2013.026

Keywords

epistemic logic, dynamic propositional logic, structural proof theory, labelled sequent calculus, epistemic paradox

Abstract

A combination of epistemic logic and dynamic logic of programs is presented. Although rich enough to formalize some simple game-theoretic scenarios, its axiomatization is problematic as it leads to the paradoxical conclusion that agents are omniscient. A cut-free labelled Gentzen-style proof system is then introduced where knowledge and action, as well as their combinations, are formulated as rules of inference, rather than axioms. This provides a logical framework for reasoning about games in a modular and systematic way, and to give a step-by-step reconstruction of agents omniscience. In particular, its semantic assumptions are made explicit and a possible solution can be found in weakening the properties of the knowledge operator.

Author Biographies

Paolo Maffezioli, University of Groningen

Faculty of Philosophy

Alberto Naibo, University of Paris 1 Panthéon-Sorbonne, Paris

Department of Philosophy

References

Aumann, R., “Agreeing to disagree”, Annals of Statistics, 4 (1976): 1236–1239. DOI: 10.1214/aos/1176343654

Bull, R.A., “Cut elimination for propositional dynamic logic without *”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 38 (1992): 85–100. DOI: 10.1002/malq.19920380107

Dowek, G., “About folding-unfolding cuts and cuts modulo”, Journal of Logic and Computation, 11 (2001): 419–429. DOI: 10.1093/logcom/11.3.419

Dummett, M., “What is a theory of meaning? (II)”, pages 67–137 in Truth and Meaning. Essays in semantics, G. Evans and J. McDowell (eds.), Oxford: Clarendon Press, 1976.

Dummett, M., The Logical Basis of Metaphysics, London: Duckworth, 1991.

Fagin, R., J.Y. Halpern, Y. Moses, and M.Y. Vardi, Reasoning about Knowledge, Cambridge (USA): MIT Press, 1995.

Fitting, M., “Reasoning about games”, Studia Logica, 99 (2011): 143–169. DOI: 10.1007/s11225-011-9358-7

Gentzen, G., “New version of the consistency proof for elementary number theory”, pages 252–286 in The Collected Papers of Gerhard Gentzen, M. Szabo (ed.), Amsterdam: North-Holland, 1969.

Girard, J.-Y., Proof Theory and Logical Complexity (Vol. 1), Naples: Bibliopolis, 1987.

Goldblatt, R., Logic of Time and Computation (2nd ed.), Stanford: CSLI Publications, 1992.

Gödel, K., “An interpretation of the intuitionistic propositional calculus”, pages 296–302 in Collected Works (Vol. 3), S. Feferman et al. (eds.), Oxford: Oxford University Press, 2001.

Hakli, R., and S. Negri, “Proof theory for distributed knowledge”, pages 100–116 in Computational Logic in Multi-Agent Systems 8th International Workshop, CLIMA VIII, Porto, Portugal, September 10-11, 2007, F. Sadri and K. Satoh (eds.), Lecture Notes in Artificial Intelligence (Vol. 5405), Berlin-Heidelberg: Springer, 2008. DOI: 10.1007/978-3-540-88833-8_6

Harel, D., D. Kozen, and J. Tiuryn, Dynamic Logic, Cambridge, MA: MIT Press, 2000.

Hill, B., and F. Poggiolesi, “A contraction-free and cut-free sequent calculus for propositional dynamic logic”, Studia Logica, 94 (2010): 47–72. DOI: 10.1007/s11225-010-9224-z

Hintikka, J., Knowledge and Belief. An introduction to the logic of the two notions, Ithaca & London: Cornell University Press, 1962.

Maffezioli, P., A. Naibo, and S. Negri, “The Church-Fitch knowability paradox in the light of structural proof theory”, Synthese (2012). DOI: 10.1007/s11229-012-0061-7

Martin-Löf, P., “Verificationism then and now”, pages 187–196 in The Foundational Debate. Complexity and constructivity in mathematics and physics, W. DePauli-Schimanovich et al. (eds.), Dordrecht: Kluwer, 1995. DOI: 10.1007/978-94-017-3327-4_14

Negri, S., “Contraction-free sequent calculi for geometric theories, with an application to Barr’s theorem”, Archive for Mathematical Logic, 42 (2003): 389–401. DOI: 10.1007/s001530100124

Negri, S., “Proof analysis in modal logic”, Journal of Philosophical Logic, 34 (2005): 507–544. DOI: 10.1007/s10992-005-2267-3

Negri, S., and J. von Plato, Structural Proof Theory, Cambridge: Cambridge University Press, 2001.

Negri, S., and L. von Plato, Proof Analysis. A contribution to Hilbert’s last problem, Cambridge: Cambridge University Press, 2011.

Pauly, M., and R. Parikh, “Game Logic: An overview”, Studia Logica, 75 (2003): 165–182.

Sakalauskait˙ e, J., “A sequent calculus for propositional dynamic logic for agents with interactions”, Lithuanian Mathematical Journal, 45 (2005): 217–224.

DOI: 10.1007/s10986-005-0025-4

Salerno, J. (ed.), New Essays on the Knowability Paradox, Oxford: Oxford University Press, (2009).

Schmidt, R., and D. Tishkovsky, “On combination of propositional dynamic logic and doxastic modal logics”, Journal of Logic, Language and Information, 17 (2008): 109–129. DOI: 10.1007/s10849-007-9041-6

Sorensen, M.H., and P. Urzyczyn, Lectures on the Curry-Howard Isomorphism, Amsterdam: North-Holland, 2006.

Troelstra, A.S., Lectures on Linear Logic, Stanford: CSLI Publications, 1992.

Troelstra, A.S., and H. Schwichtenberg, Basic Proof Theory (2nd ed.), Cambridge: Cambridge University Press, 2000.

Wittgenstein, L., Philosophical Investigations, Oxford: Blackwell, 1953.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2013-09-12

How to Cite

1.
MAFFEZIOLI, Paolo and NAIBO, Alberto. Proof theory of epistemic logic of programs. Logic and Logical Philosophy. Online. 12 September 2013. Vol. 23, no. 3, p. 301–328. [Accessed 4 July 2025]. DOI 10.12775/LLP.2013.026.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 23 No. 3 (2014): September

Section

Articles

Stats

Number of views and downloads: 747
Number of citations: 4

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

epistemic logic, dynamic propositional logic, structural proof theory, labelled sequent calculus, epistemic paradox
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop