Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

More on the decidability of mereological theories
  • Home
  • /
  • More on the decidability of mereological theories
  1. Home /
  2. Archives /
  3. Vol. 20 No. 3 (2011) /
  4. Articles

More on the decidability of mereological theories

Authors

  • Hsing-chien Tsai National Chung-Cheng University, Taiwan

DOI:

https://doi.org/10.12775/LLP.2011.015

Keywords

mereology, mereological theories, part-whole relation, decidability, undecidability

Abstract

Quite a few results concerning the decidability of mereological theories have been given in my previous paper. But many mereological theories are still left unaccounted for. In this paper I will refine a general method for proving the undecidability of a theory and then by making use of it, I will show that most mereological theories that are strictly weaker than CEM are finitely inseparable and hence undecidable. The same results might be carried over to some extensions of those weak theories by adding the fusion axiom schema. Most of the proofs to be presented in this paper take finite lattices as the base models when applying the refined method. However, I shall also point out the limitation of this kind of reduction and make some observations and conjectures concerning the decidability of stronger mereological theories.

Author Biography

Hsing-chien Tsai, National Chung-Cheng University, Taiwan

Department of Philosophy

References

Casati, R., and A.C. Varzi 1999, Parts and Places, The MIT Press. Clay, R.E., 1974, “Relation of Leśniewski’s Mereology to Boolean Algebras’, Journal of Symbolic Logic 39: 638–648.

Enderton, H.B., 1972, A Mathematical Introduction to Logic, San Diego: Academic Press.

Grzegorcyk, A., 1955, “The systems of Leśniewski in relation to contemporary logical research”, Studia Logica 3: 77–95.

Monk, J.D., 1976, Mathematical Logic, New York: Springer-Verlag.

Simons, P., 1987, Parts: A Study in Ontology, Oxford: Clarendon Press. Tarski, A., 1949, “Arithmetical classes and types of Boolean algebras”, Bull. Amer. Math. Soc 55: 64.

Tarski, A., 1956, “On the foundations of Boolean algebra’, pages 320–341 in: Logic, Semantics, Metamathematics, Clarendon Press, Oxford.

Tsai, Hsing-chien, 2009, “Decidability of mereological theoreis”, Logic and Logical Philosophy 18: 45–63.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2011-11-30

How to Cite

1.
TSAI, Hsing-chien. More on the decidability of mereological theories. Logic and Logical Philosophy. Online. 30 November 2011. Vol. 20, no. 3, pp. 251-265. [Accessed 2 July 2025]. DOI 10.12775/LLP.2011.015.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 20 No. 3 (2011)

Section

Articles

Stats

Number of views and downloads: 514
Number of citations: 6

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

mereology, mereological theories, part-whole relation, decidability, undecidability
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop