Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Decidability of mereological theories
  • Home
  • /
  • Decidability of mereological theories
  1. Home /
  2. Archives /
  3. Vol. 18 No. 1 (2009) /
  4. Articles

Decidability of mereological theories

Authors

  • Hsing-chien Tsai National Chung-Cheng University, Taiwan

DOI:

https://doi.org/10.12775/LLP.2009.004

Keywords

mereology, mereological theories, part-whole relation, decidability, undecidability

Abstract

Mereological theories are theories based on a binary predicate ‘being a part of’. It is believed that such a predicate must at least define a partial ordering. A mereological theory can be obtained by adding on top of the basic axioms of partial orderings some of the other axioms posited based on pertinent philosophical insights. Though mereological theories have aroused quite a few philosophers’ interest recently, not much has been said about their meta-logical properties. In this paper, I will look into whether those theories are decidable or not. Besides, since theories of Boolean algebras are in some sense upper bounds of mereological theories which can be found in the literature, I shall also make some observations about the possibility of getting mereological theories beyond Boolean algebras.

Author Biography

Hsing-chien Tsai, National Chung-Cheng University, Taiwan

Department of Philosophy

References

Casati, R., and A.C. Varzi, 1999, Parts and Places, The MIT Press.

Clay, R.E., 1974, “Relation of Leśniewski’s mereology to Boolean algebras”, Journal of Symbolic Logic 39: 638–648.

Enderton, H.B., 1972, A Mathematical Introduction to Logic, Academic Press, San Diego.

Grzegorczyk, A., 1955, “The systems of Leśniewski in relation to contemporary logical research”, Studia Logica 3: 77–97.

Koppelberg, S., 1989, Handbook of Boolean Algebras, vol. 1, North-Holland, Amsterdam.

Leśniewski, S., 1992, “Foundations of the general theory of sets I”, trans. By D.I. Barnett, in: S. Leśniewski, Collected Works, vol. 1, Kluwer, Dordrecht.

Monk, J.D., 1976, Mathematical Logic, Springer-Verlag, New York.

Pietruszczak, A., 2005, “Pieces of Mereology”, Logic and Logical Philosophy 14: 211–234.

Shoenfield, J.R., 1967, Mathematical Logic, Addison-Wesley, London.

Simons, P., 1987, Parts: A Study in Ontology, Clarendon Press, Oxford.

Tarski, A., 1956, “On the foundations of Boolean algebra”, in: Logic, Semantics, Metamathematics, Oxford University Press, Oxford.

van Inwagen, P., 1990, Material Beings, Cornell University Press, Ithaca.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2009-08-15

How to Cite

1.
TSAI, Hsing-chien. Decidability of mereological theories. Logic and Logical Philosophy. Online. 15 August 2009. Vol. 18, no. 1, pp. 45-63. [Accessed 5 July 2025]. DOI 10.12775/LLP.2009.004.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 18 No. 1 (2009)

Section

Articles

Stats

Number of views and downloads: 762
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

mereology, mereological theories, part-whole relation, decidability, undecidability
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop