Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Particular Reasoning Within Theories
  • Home
  • /
  • Particular Reasoning Within Theories
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Particular Reasoning Within Theories

Authors

  • João Rasga Instituto Superior Técnico, Universidade de Lisboa and Instituto de Telecomunicações https://orcid.org/0000-0002-1239-8496
  • Cristina Sernadas Departamento de Matemática, Instituto Superior Técnico, ULisboa https://orcid.org/0000-0002-5510-3512

DOI:

https://doi.org/10.12775/LLP.2025.008

Keywords

theories,, particular reasoning, labelled deduction, knowledge representation

Abstract

Particular reasoning enables the deductive proof of existential properties, such as the satisfiability/consistency of a set of formulas. In this work, we consider particular reasoning in the context of a theory of a given logic. The logic is presented by a semantic constraint specification. From this specification, we induce a particular calculus for the logic at hand. In this calculus we define what is a particular derivation in the context of a theory and show how to extract a model of the theory that satisfies the assertions within the derivation. We demonstrate that the induced particular calculus is both sound and complete with regard to the intended semantics. Our results are applicable to logics with a strong finite model property, including classical, intuitionistic, certain modal logics, and Nelson’s N4 logic, among others.

References

Amgoud, L., and C. Cayrol, “A reasoning model based on the production of acceptable arguments”, Annals of Mathematics and Artificial Intelligence, 34(1–3), 2002: 197–215. DOI: https://doi.org/10.1023/A:1014490210693

Arieli, O., “Paraconsistent declarative semantics for extended logic programs”, Annals of Mathematics and Artificial Intelligence, 36(4), 2002: 381–417. DOI: https://doi.org/10.1023/A:1016358201013

Bezhanishvili, N., and D. H. J. de Jongh, Intuitionistic Logic, Lecture notes, ESSLLI, Edinburgh, 2005.

Bienvenu, M., M. Leclére, M.-L. Mugnier and M.-C. Rousset, “Reasoning with ontologies”, pages 185–215 in P. Marquis, O. Papini and H. Prade (eds.), A Guided Tour of Artificial Intelligence Research. Volume I: Knowledge Representation, Reasoning and Learning, Springer, 2020. DOI: https://doi.org/10.1007/978-3-030-06164-7_6

Blackburn, P., M. de Rijke and Y. Venema, Modal Logic, Cambridge University Press, 2001. DOI: https://doi.org/10.1017/CBO9781107050884

Bova, S., R. Ganian and S. Szeider, “Model checking existential logic on partially ordered sets”, ACM Transactions on Computational Logic, 17(2), 2015: 1–35. DOI: https://doi.org/10.1145/2603088.2603110

Carnielli, W., and M. Coniglio, Paraconsistent Logic: Consistency, Contradiction and Negation, Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-33205-5

Corea, C., I. Kuhlmann, M. Thimm and J. Grant, “Paraconsistent reasoning for inconsistency measurement in declarative process specifications”, Information Systems, 122, 2024: 102347. DOI: https://doi.org/10.1016/j.is.2024.102347

D’Agostino, M., D. M. Gabbay, R. Hähnle and J. Posegga (eds.), Handbook of Tableau Methods, Kluwer, 1999. DOI: https://doi.org/10.1007/978-94-017-1754-0

Ferrari, M., C. Fiorentini and G. Fiorino, “Contraction-free linear depth sequent calculi for intuitionistic propositional logic with the subformula property and minimal depth counter-models”, Journal of Automated Reasoning, 51(2), 2013: 129–149. DOI: https://doi.org/10.1007/s10817-012-9252-7

Gentzen, G., The Collected Papers of Gerhard Gentzen, Studies in Logic and the Foundations of Mathematics, North-Holland, 1969.

Halpern, J. Y., and R. Pucella, “Modeling adversaries in a logic for security protocol analysis”, pages 115–132 in A. E. Abdallah, P. Ryan, and S. Schneider (eds.), Formal Aspects of Security, Springer, 2003. DOI: https://doi.org/10.1007/978-3-540-40981-6_11

Indrzejczak, A., “Jaśkowski and Gentzen approaches to natural deduction and related systems”, pages 253–264 in K. Kijania-Placek and J. Woleński (eds.), The Lvov-Warsaw School and Contemporary Philosophy, Springer, 1998. DOI: https://doi.org/10.1007/978-94-011-5108-5_21

Jaśkowski, S, “On rules of supposition in formal logic”, Studia Logica, 1, 1934: 5–32. Reprint: pages 232–258 in S. McCall (ed.), Polish Logic 1920–1939, Oxford: Oxford University Press, 1967.

Kamide, N., and H. Wansing, “Proof theory of Nelson’s paraconsistent logic: A uniform perspective”, Theoretical Computer Science, 415, 2012: 1–38. DOI: https://doi.org/10.1016/j.tcs.2011.11.001

Kamide, N., and H. Wansing (eds.), Proof Theory of N4-related Paraconsistent Logics, vol. 54 of Studies in Logic, College Publications, 2015.

Kotas, J., and A. Pieczkowski, “Scientific works of Stanisław Jaśkowski”, Studia Logica, 21, 1967: 7–15. DOI: https://doi.org/10.1007/BF02123411

Lu, K., S. Zhang, P. Stone and X. Chen, “Learning and reasoning for robot dialog and navigation tasks”, pages 107–117 in O. Pietquin, S. Muresan, V. Chen, C. Kennington, D. Vandyke, N. Dethlefs, K. Inoue, E. Ekstedt, and S. Ultes (eds.), Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue, Association for Computational Linguistics, 2020. DOI: https://doi.org/10.18653/v1/2020.sigdial-1.14

Łukasiewicz, J., Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, Oxford University Press, 1951.

Negri, S., “Proof analysis in modal logic”, Journal of Philosophical Logic, 34(5-6), 2005: 507–544. DOI: https://doi.org/10.1007/s10992-005-2267-3

Negri, S., “On the duality of proofs and countermodels in labelled sequent calculi”, pages 5–9 in Tableaux, vol. 8123 of Lecture Notes in Computer Science, Springer, 2013. DOI: 1 https://doi.org/0.1007/978-3-642-40537-2_2

Negri, S., “Proofs and countermodels in non-classical logics”, Logica Universalis, 8(1), 2014: 25–60. DOI: https://doi.org/10.1007/s11787-014-0097-1

Nelson, D., “Constructible falsity”, The Journal of Symbolic Logic, 14, 1949: 16–26. DOI: https://doi.org/10.2307/2268973

Ramos, J., J. Rasga and C. Sernadas, “Labelled proof systems for existential reasoning”, Logic Journal of the IGPL, 33(1), 2025: 173–201. DOI: https://doi.org/10.1093/jigpal/jzad030

Rybakov, V. V., Admissibility of Logical Inference Rules, North-Holland, 1997.

Skura, T., “A refutation theory”, Logica Universalis, 3(2), 2009: 293–302. DOI: https://doi.org/10.1007/s11787-009-0009-y

Downloads

  • PDF

Published

2025-03-28

How to Cite

1.
RASGA, João and SERNADAS, Cristina. Particular Reasoning Within Theories. Logic and Logical Philosophy. Online. 28 March 2025. pp. 1-37. [Accessed 28 June 2025]. DOI 10.12775/LLP.2025.008.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

License

Copyright (c) 2025 João Rasga, Cristina Sernadas

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 237
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

theories,, particular reasoning, labelled deduction, knowledge representation
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop