Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Logical Constants and Arithmetical Forms
  • Strona domowa
  • /
  • Logical Constants and Arithmetical Forms
  1. Strona domowa /
  2. Archiwum /
  3. Tom 32 Nr 3 (2023): Wrzesień /
  4. Artykuły

Logical Constants and Arithmetical Forms

Autor

  • Sebastian G.W. Speitel University of Bonn

DOI:

https://doi.org/10.12775/LLP.2023.012

Słowa kluczowe

logical constants, logical form, criterion of logicality, formality

Abstrakt

This paper reflects on the limits of logical form set by a novel criterion of logicality proposed in (Bonnay and Speitel, 2021). The interest stems from the fact that the delineation of logical terms according to the criterion exceeds the boundaries of standard first-order logic. Among ‘novel’ logical terms is the quantifier “there are infinitely many”. Since the structure of the natural numbers is categorically characterisable in a language including this quantifier we ask: does this imply that arithmetical forms have been reduced to logical forms? And, in general, what other conditions need to be satisfied for a form to qualify as “fully logical”? We survey answers to these questions.

Bibliografia

Bonnay, D., 2008, “Logicality and invariance”, Bulletin of Symbolic Logic 14 (1): 29–68. DOI: http://dx.doi.org/10.2178/bsl/1208358843

Bonnay, D., and F. Engström, 2018, “Invariance and definability, with and without equality”, Notre Dame Journal of Formal Logic 59 (1): 109–133. DOI: http://dx.doi.org/10.1215/00294527-2017-0020

Bonnay, D., and S. G. W. Speitel, 2021, “The Ways of Logicality: Invariance and Categoricity”, pages 55–80 in G. Sagi and J. Woods (eds.), The Semantic Conception of Logic: Essays on Consequence, Invariance, and Meaning, Cambridge: Cambridge University Press. DOI: http://dx.doi.org/10.1017/9781108524919.004

Bonnay, D., and D. Westerståhl, 2016, “Compositionality solves Carnap’s problem”, Erkenntnis 81: 721–739. DOI: http://dx.doi.org/10.1007/s10670-015-9764-8

Carnap, R., 1943, Formalization of Logic, Harvard University Press.

Ebbinghaus, H.-D., 2017, “Extended logics – the general framework”, pages 25–76 in J. Barwise and S. Feferman (eds.) Model-Theoretic Logics, Cambridge: Cambridge University Press. DOI: http://dx.doi.org/10.1017/9781316717158.005

Feferman, S., 1999, “Logic, logics, and logicism”, Notre Dame Journal of Formal Logic 40 (1): 31–54. DOI: http://dx.doi.org/10.1305/ndjfl/1039096304

Feferman, S., 2010, “Set-theoretical invariance criteria for logicality”, Notre Dame Journal of Formal Logic 51 (1): 3–20. DOI: http://dx.doi.org/10.1215/00294527-2010-002

Feferman, S., 2015, “Which quantifiers are logical? A combined semantical and inferential criterion”, pages 19–30 in A. Torza (ed.), Quantifiers, Quantifiers, and Quantifiers: Themes in Logic, Metaphysics, and Language, Synthese Library (vol. 373), Springer. DOI: http://dx.doi.org/10.1007/978-3-319-18362-6_2

Gentzen, G., 1935, “Untersuchungen über das logische Schließen I”, Mathematische Zeitschrift 39: 176–210. DOI: http://dx.doi.org/10.1007/BF01201353

Griffiths, O., and A. Paseau, 2022, One True Logic. A Monist Manifesto, Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198829713.002.0003

Kennedy, J., and J. Väänänen, 2021, “Logicality and model classes”, Bulletin of Symbolic Logic 27 (4): 385–414. DOI: http://dx.doi.org/10.1017/bsl.2021.42

Lindström, P., 1966, “First order predicate logic with generalized quantifiers”, Theoria 32 (3): 186–195. DOI: http://dx.doi.org/10.1111/j.1755-2567.1966.tb00600.x

MacFarlane, J., 2000, “What does it mean to say that logic is formal?”, PhD thesis, University of Pittsburgh.

MacFarlane, J., 2015, “Logical constants”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/win2017/entries/logical-constants/

McGee, V., 1997, “Logical operations”, Journal of Philosophical Logic 25 (6): 567–580. DOI: http://dx.doi.org/10.1007/BF00265253

Mostowski, A., 1957, “On a generalization of quantifiers”, Fundamenta Mathematicae 44 (1): 12–36. DOI: http://dx.doi.org/10.2307/2964414

Murzi, J., and F. Steinberger, 2017, “Inferentialism”, pages 197–224 in B. Hale, C. Wright and A. Miller (eds.), Blackwell Companion to Philosophy of Language, second edition, Wiley Blackwell. DOI: http://dx.doi.org/10.1002/9781118972090.ch9

Rumfitt, I., 2000, “ ‘Yes’ and ‘No’ ”, Mind 109 (436): 781–823. DOI: http://dx.doi.org/10.1093/mind/109.436.781

Sagi, G., 2018, “Logicality and meaning”, The Review of Symbolic Logic 11 (1): 133–159. DOI: http://dx.doi.org/10.1017/S1755020317000247

Sher, G., 1991, The Bounds of Logic: A Generalized Viewpoint, MIT Press.

Sher, G., 2016, Epistemic Friction. An Essay on Knowledge, Truth, and Logic, Oxford University Press. DOI: http://dx.doi.org/10.1093/acprof:oso/9780198768685.001.0001

Sher, G., 2022, Logical Consequence, Elements in Philosophy and Logic, Cambridge: Cambridge University Press. DOI: http://dx.doi.org/10.1017/9781108981668

Speitel, S. G. W., 2020, “Logical constants between inference and reference. An essay in the philosophy of logic”, UC San Diego Electronic Theses and Dissertations. https://escholarship.org/uc/item/7256r138

Tarski, A., 1983, “On the concept of logical consequence”, pages 409–421 in J. Corcoran (ed.), Logic, Semantics, Metamathematics, second edition, Hacket Publishing Company.

Tarski, A., 1986, “What are logical notions”, History and Philosophy of Logic 7: 143–154. DOI: http://dx.doi.org/10.1080/01445348608837096

Westerståhl, D., 2019, “Generalized quantifiers”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/win2019/entries/generalized-quantifiers/

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

23.06.2023

Jak cytować

1.
SPEITEL, Sebastian G.W. Logical Constants and Arithmetical Forms. Logic and Logical Philosophy [online]. 23 czerwiec 2023, T. 32, nr 3, s. 495–510. [udostępniono 26.12.2025]. DOI 10.12775/LLP.2023.012.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 32 Nr 3 (2023): Wrzesień

Dział

Artykuły

Licencja

Prawa autorskie (c) 2023 Sebastian G. W. Speitel

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 867
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

logical constants, logical form, criterion of logicality, formality
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa