Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Procedural Semantics and its Relevance to Paradox
  • Home
  • /
  • Procedural Semantics and its Relevance to Paradox
  1. Home /
  2. Archives /
  3. Vol. 33 No. 1 (2024): March /
  4. Articles

Procedural Semantics and its Relevance to Paradox

Authors

  • Elbert Booij ILLC, University of Amsterdam https://orcid.org/0000-0001-7632-8094

DOI:

https://doi.org/10.12775/LLP.2023.015

Keywords

procedural semantics, truth, liar paradox, Curry’s paradox

Abstract

Two semantic paradoxes, the Liar and Curry’s paradox, are analysed using a newly developed conception of procedural semantics (semantics according to which the truth of propositions is determined algorithmically), whose main characteristic is its departure from methodological realism. Rather than determining pre-existing facts, procedures are constitutive of them. Of this semantics, two versions are considered: closed (where the halting of procedures is presumed) and open (without this presumption). To this end, a procedural approach to deductive reasoning is developed, based on the idea of simulation. As is shown, closed semantics supports classical logic, but cannot in any straightforward way accommodate the concept of truth. In open semantics, where paradoxical propositions naturally ‘belong’, they cease to be paradoxical; yet, it is concluded that the natural choice—for logicians and common people alike—is to stick to closed semantics, pragmatically circumventing problematic utterances.

References

Behmann, H., 1931, “Zu den Widersprüchen der Logik und der Mengenlehre”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 40: 37–48.

Burgess, J. P., 1986, “The truth is never simple”, The Journal of Symbolic Logic, 51 (3): 663–681. DOI: http://dx.doi.org/10.2307/2274021

Dummett, M., 1981, Frege: Philosophy of language, Harvard University Press.

Dummett, M., 1982, “Realism”, Synthese, 52 (1): 55–112. DOI: : http://dx.doi.org/10.1007/BF00485255

Dummett, M., 1991, The Logical Basis of Metaphysics, Harvard University Press.

Duží, M., B. Jespersen and P. Materna, 2010, Procedural Semantics for Hyperintensional Logic: Foundations and Applications of Transparent Intensional Logic, volume 17, Springer Science & Business Media.

Eder, G., 2019, “Truth, paradox, and the procedural conception of Fregean sense”, pages 153–168 in Philosophy of Logic and Mathematics, De Gruyter.

Field, H., “Saving the truth schema from paradox”, 2002, Journal of Philosophical Logic, 31 (1): 1–27. DOI: http://dx.doi.org/10.1023/A:1015063620612

Field, H., 2003, “A revenge-immune solution to the semantic paradoxes”, Journal of Philosophical Logic, 32 (2): 139–177. DOI: http://dx.doi.org/10.1023/A:1023027808400

Gupta, A., 1982, “Truth and paradox”, Journal of Philosophical Logic, 11 (1): 1–60. DOI: http://dx.doi.org/10.1007/BF00302338

Gupta, A., and N. Belnap, 1993, The Revision Theory of Truth, Mit Press. DOI: http://dx.doi.org/10.7551/mitpress/5938.001.0001

Herzberger, H., 1982, “Naive semantics and the liar paradox”, The Journal of Philosophy, 79 (9): 479–497. DOI: http://dx.doi.org/10.2307/2026380

Horty, J., 2007, Frege on Definitions: A Case Study of Semantic Content, Oxford University Press.

Kleene, S. C., 1938, “On notation for ordinal numbers”, The Journal of Symbolic Logic, 3 (4): 150–155. DOI: http://dx.doi.org/10.2307/2267778

Kripke, S., 1976, “Outline of a theory of truth”, The Journal of Philosophy, 72 (19): 690–716. DOI: http://dx.doi.org/10.2307/2024634

Leitgeb, H., 2007, “What theories of truth should be like (but cannot be)”, Philosophy Compass, 2 (2): 276–290.

McGee, V., 1985, “How truthlike can a predicate be? A negative result”, Journal of Philosophical Logic, 14 (4): 399–410. DOI: http://dx.doi.org/10.1007/BF00649483

Moschovakis, Y. N., 1994, “Sense and denotation as algorithm and value”, Lecture Notes in Logic, 2: 210–249.

Moschovakis, Y. N., 2006, “A logical calculus of meaning and synonymy”, Linguistics and Philosophy, 29 (1): 27–89. DOI: http://dx.doi.org/10.1007/s10988-005-6920-7

Muskens, R., 2005, “Sense and the computation of reference”, Linguistics and Philosophy, 28 (4): 473–504. DOI: http://dx.doi.org/10.1007/s10988-004-7684-1

Prior, A. N., 1960, “The runabout inference-ticket”, Analysis, 21 (2): 38–39. DOI: http://dx.doi.org/10.1093/analys/21.2.38

Raclavský, J., 2014, “Explicating the notion of truth within transparent intensional logic”, pages 167–177, Chapter 12, in Recent Trends in Philosophical Logic, Trends in Logic, Springer. DOI: http://dx.doi.org/10.1007/978-3-319-06080-4_12

Ramsey, F. P., 2000, “General propositions and causality”, pages 237–257 in R. B. Braithwaite (ed.), The Foundations of Mathematics and other Logical Essays, Routledge.

Russell, B., 1906, “Les paradoxes de la logique” Revue de métaphysique et de morale, 14 (5): 627–650.

Suppes, P., 1980, “Procedural semantics”, pages 27–35 in Language, Logic, and Philosophy: Proceedings of the 4th International Wittgenstein Symposium.

Suppes, P., 1982, “Variable-free semantics with remarks on procedural extensions”, in T. W. Simon and R. J. Scholes (eds.), Language, Mind, and Mrain, Psychology Press.

Tichý, P., 1969, “Intension in terms of Turing machines”, Studia Logica, 24: 7–25. DOI: http://dx.doi.org/10.1007/BF02134290

Tichý, P., 1971, “An approach to intensional analysis”, Noûs, 5 (3): 273–297. DOI: http://dx.doi.org/10.2307/2214668

Tichý, P., 2004, Pavel Tichý’s Collected Papers in Logic and Philosophy, Otago University Press.

Yablo, S., 1985, “Truth and reflection”, Journal of Philosophical Logic, 14 (3): 297–349. DOI: http://dx.doi.org/10.1007/BF00249368

Yablo, S., 1993, “Paradox without self-reference”, Analysis, 53 (4): 251–252. DOI: http://dx.doi.org/10.1093/analys/53.4.251

Logic and Logical Philosophy

Downloads

  • PDF

Published

2023-07-18

How to Cite

1.
BOOIJ, Elbert. Procedural Semantics and its Relevance to Paradox. Logic and Logical Philosophy. Online. 18 July 2023. Vol. 33, no. 1, pp. 3-26. [Accessed 29 June 2025]. DOI 10.12775/LLP.2023.015.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 33 No. 1 (2024): March

Section

Articles

License

Copyright (c) 2023 Elbert Booij

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1121
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

procedural semantics, truth, liar paradox, Curry’s paradox
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop