Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Simplified Semantics for Further Relevant Logics I: Unreduced Semantics for E and Π′
  • Home
  • /
  • Simplified Semantics for Further Relevant Logics I: Unreduced Semantics for E and Π′
  1. Home /
  2. Archives /
  3. Vol. 34 No. 1 (2025): March /
  4. Articles

Simplified Semantics for Further Relevant Logics I

Unreduced Semantics for E and Π′

Authors

  • Tore Fjetland Øgaard Department of Philosophy, University of Bergen https://orcid.org/0000-0002-7082-991X

DOI:

https://doi.org/10.12775/LLP.2024.021

Keywords

converse conditional, E, fusion, γ, relevant logics, simplified Routley-Meyer semantics, unreduced frames

Abstract

This paper shows that the relevant logics E and Π′ are strongly sound and complete with regards to a version of the “simplified” Routley-Meyer semantics. Such a semantics for E has been thought impossible. Although it is impossible if an admissible rule of E  the rule of restricted assertion or equivalently Ackermann’s δ-rule  is solely added as a primitive rule, it is very much possible when E is axiomatized in the way Anderson and Belnap did.

The simplified semantics for E and Π′ requires unreduced frames. Contra what has been claimed, however, no additional frame component is required over and above what’s required to model other relevant logics such as T and R. It is also shown how to modify the tonicity requirements of the ternary relation so as to allow for the standard truth condition for both fusion – the intensional conjunction ◦ – as well as the converse conditional ←.

References

Ackermann, W., 1956, “Begründung einer strengen Implikation”, Journal of Symbolic Logic, 21(2): 113–128. DOI: http://dx.doi.org/10.2307/2268750

Anderson, A. R., and N. D. Belnap, 1958, “A modification of Ackermann’s “rigorous implication””, Journal of Symbolic Logic, 23(4): 457–458. DOI: http://dx.doi.org/10.2307/2964046

Anderson, A. R., and N. D. Belnap, 1959, “Modalities in Ackermann’s “rigorous implication””, Journal of Symbolic Logic, 24(2): 107–111. DOI: http://dx.doi.org/10.2307/2964754

Anderson, A. R., and N. D. Belnap, 1975, Entailment: The Logic of Relevance and Necessity, volume 1, Princeton University Press, Princeton.

Anderson, A. R., N. D. Belnap, and M. J. Dunn, 1992, Entailment: The Logic of Relevance and Necessity, volume 2, Princeton University Press, Princeton. DOI: http://dx.doi.org/10.1515/9781400887071

Belnap, N. D., 1959, “A formalization of entailment”, PhD thesis, Yale University.

Belnap, N. D., 1960, “A formal analysis of entailment”, Technical Report No. 7, Contact No. SAR/Nonr-609(16), Office of Naval Research, New Haven.

Brady, R. T., 1984, “Natural deduction systems for some quantified relevant logics”, Logique et Analyse, 27(108): 355–377. http://www.jstor.org/stable/44084099

Brady, R. T., 2006, Universal Logic, CSLI Publication, Stanford.

Dunn, J. M., 1966, “The algebra of intensional logics”, PhD thesis, University of Pittsburgh. https://www.proquest.com/dissertations-theses/algebra-intensional-logics/docview/302201330/se-2

Galatos, N., P.Jipsen, T. Kowalski, and H. Ono, 2007, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier. DOI: http://dx.doi.org/10.1016/S0049-237X(07)80005-X

Kron, A., “Deduction theorems for relevant logics”, 1973, Mathematical Logic Quarterly, 19(3-6): 85–92. DOI: http://dx.doi.org/10.1002/malq.19730190306

Maksimowa, M., 1973, “A semantics for the calculus E of entailment”, Bulletin of the Section of Logic, 2(1): 18–20.

Mares, E. D., 2000, “CE is not a conservative extension of E”, Journal of Philosophical Logic, 29(3): 263–275. DOI: http://dx.doi.org/10.1023/A:1004731401855

Mares, E., 2024a, The Logic of Entailment and its History, Cambridge University Press. DOI: http://dx.doi.org/10.1017/9781009375283

Mares, E., 2024b, “Relevance logic”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University, Summer 2024 edition. https://plato.stanford.edu/archives/sum2024/entries/logic-relevance/

Mares, E., and Sh. Standefer, 2017, “The relevant logic E and some close neighbours: A reinterpretation”, IfCoLog Journal of Logics and Their Applications, 4(3): 695–730. https://www.collegepublications.co.uk/downloads/ifcolog00012.pdf#page=155

Méndez, J. M., 2009, “A Routley-Meyer semantics for Ackermann’s logics of “strenge implication”,´’, Logic and Logical Philosophy, 18(3–4): 191–219. DOI: http://dx.doi.org/10.12775/LLP.2009.010

Méndez, J. M., G. Robles, and F. Salto, 2011, “Ticket Entailment plus the mingle axiom has the variable-sharing property”, Logic Journal of the IGPL, 20(1): 355–364. DOI: http://dx.doi.org/10.1093/jigpal/jzr046

Meyer, R. K., 1970, “E and S4”, Notre Dame J. Formal Logic, 11(2): 181–199. DOI: http://dx.doi.org/10.1305/ndjfl/1093893935

Meyer, R. K., and J. M. Dunn, 1969, “E, R and γ”, Journal of Symbolic Logic, 34: 460–474. DOI: http://dx.doi.org/10.2307/2270909

Ono, H., 2003, “Substructural logics and residuated lattices – an introduction”, pages 193–228 in V. F. Hendricks and J. Malinowski (eds.), Trends in Logic: 50 Years of Studia Logica, Springer Netherlands, Dordrecht. DOI: http://dx.doi.org/10.1007/978-94-017-3598-8_8

Øgaard, T. F., 2017, “Skolem functions in non-classical logics”, Australasian Journal of Logic, 14(1): 181–225. DOI: http://dx.doi.org/10.26686/ajl.v14i1.4031

Øgaard, T. F., 2021a, “Non-Boolean classical relevant logics I”, Synthese, 198: 6993–7024. DOI: http://dx.doi.org/10.1007/s11229-019-02507-z

Øgaard, T. F., 2021b, Non-Boolean classical relevant logics II: Classicality through truth-constants”, Synthese, 199: 6169–6201. DOI: http://dx.doi.org/10.1007/s11229-021-03065-z

Øgaard, T. F., 2024, “Simplified semantics for further relevant logics II: Propositional Constants”, Logic and Logical Philosophy. DOI: http://dx.doi.org/10.12775/LLP.2024.022

Priest, G., 2008, An Introduction to Non-Classical Logic. From If to Is, Cambridge University Press, Cambridge, 2nd edition. DOI: http://dx.doi.org/10.1017/CBO9780511801174

Priest, G., 2015, “Fusion and confusion”, Topoi, 34(1): 55–61. DOI: http://dx.doi.org/10.1007/s11245-013-9175-x

Priest, G., and R. Sylvan, 1992, “Simplified semantics for basic relevant logic”, Journal of Philosophical Logic, 21(2): 217–232. DOI: http://dx.doi.org/10.1007/BF00248640

Restall, G., “Simplified semantics for relevant logics (and some of their rivals)”, 1993, Journal of Philosophical Logic, 22(5): http://dx.doi.org/481–511. DOI: 10.1007/BF01349561

Restall, G., 2000, An Introduction to Substructural Logics, Routledge, London. DOI: http://dx.doi.org/10.4324/9780203016244

Restall, G., and T. Roy, 2009, “On permutation in simplified semantics”, Journal of Philosophical Logic, 38: 333–341. DOI: http://dx.doi.org/10.1007/s10992-009-9104-z

Robles, G., 2022, “The logic E-mingle and its Routley-Meyer semantics”, Bulletin of Symbolic Logic, 28(4): 599–600. DOI: http://dx.doi.org/10.2307/27187036

Routley, R., R. K. Meyer, V. Plumwood, and R. T. Brady, 1982, Relevant Logics and Their Rivals, volume 1, Ridgeview Publishing Company, Atascadero, California.

Slaney, J. K., 1984, “A metacompleteness theorem for contraction-free relevant logics”, Studia Logica, 43(1): 159–168. DOI: http://dx.doi.org/10.1007/BF00935747

Slaney, J., 1995, “MaGIC, matrix generator for implication connectives: Release 2.1 notes and guide”, Technical Report TR-ARP-11/95, Automated Reasoning Project, Australian National University. http://users.cecs.anu.edu.au/~jks/magic.html

Logic and Logical Philosophy

Downloads

  • PDF

Published

2024-08-27

How to Cite

1.
ØGAARD, Tore Fjetland. Simplified Semantics for Further Relevant Logics I: Unreduced Semantics for E and Π′. Logic and Logical Philosophy. Online. 27 August 2024. Vol. 34, no. 1, pp. 109-151. [Accessed 29 June 2025]. DOI 10.12775/LLP.2024.021.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 34 No. 1 (2025): March

Section

Articles

License

Copyright (c) 2024 Tore Fjetland Øgaard

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 717
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

converse conditional, E, fusion, γ, relevant logics, simplified Routley-Meyer semantics, unreduced frames
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop