Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Zeno of Sidon vindicatus: A Mereological Analysis of the Bisection of the Circle
  • Home
  • /
  • Zeno of Sidon vindicatus: A Mereological Analysis of the Bisection of the Circle
  1. Home /
  2. Archives /
  3. Vol. 32 No. 4 (2023): December /
  4. Articles

Zeno of Sidon vindicatus: A Mereological Analysis of the Bisection of the Circle

Authors

  • Paolo Maffezioli Department of Philosophy and Education, University of Torino https://orcid.org/0000-0001-9832-924X

DOI:

https://doi.org/10.12775/LLP.2022.032

Keywords

Euclid’s Elements, Zeno of Sidon, mereology

Abstract

I provide a mereological analysis of Zeno of Sidon’s objection that in Euclid’s Elements we need to supplement the principle that there are no common segments of straight lines and circumferences. The objection is based on the claim that such a principle is presupposed in the proof that the diameter cuts the circle in half. Against Zeno, Posidonius attempts to prove the bisection of the circle without resorting to Zeno’s principle. I show that Posidonius’ proof is flawed as it fails to account for the case in which one of the two circumferences cut by the diameter is a proper part of the other. When such a case is considered, then either the bisection of the circle is false or it presupposes Zeno’s principle, as claimed by Zeno.

References

Acerbi, F., 2007, Euclide. Tutte le opere, Milano, Bompiani.

Angeli, A., and M. Colaizzo, 1979, “I frammenti di Zenone Sidonio”, Cronache Ercolanesi, 9: 47–119.

Apelt, O., 1891, “Die Widersacher der Mathematik im Alterum”, pages 253–271 in Beiträge zur Geschichte der Griechischen Philosophie, Leipzig, Teubner.

Cotnoir, A. and A. Varzi, 2021, Mereology, Oxford, Oxford University Press.

De Risi, V., 2014, Gerolamo Saccheri. Euclid Vindicated from Every Blemish, Basel/Boston, Birkhäuser.

De Risi, V., 2021a, “Euclid’s common notions and the theory of equivalence”, Foundations of Science, 26: 301–324.

De Risi, V., 2021b, “Gapless lines and gapless proofs: intersections and continuity in Euclid’s Elements”, Apeiron, 54: 233–259.

Heath, T., 1956, The thirteen books of the Elements, translated with introduction and commentary by Sir Thomas L. Heath, 3 volumes, 2nd edition 1926, Cambridge, Cambridge University Press (reprint: New York, Dover).

Kidd, I., 1999, Posidonius. The Translation of the Fragments, volume III, Cambridge, Cambridge University Press.

Lo Bello, A., 2003, Gerard of Cremona’s translation of the commentary of al Nayrizi on Book I of Euclid’s elements of geometry, Leiden, Brill.

Luria, S., 1933, “Die Infinitesiamallehere der antiken Atomisten”, Quellen und Studien zur Geschichte der Matematik, Astronomie, und Physik, 2: 106–185.

Maffezioli, P., 2022, “La critica di Zenone di Sidone agli Elementi di Euclide: un dibattito antico sull’unicità”, Rivista di filosofia, 113: 45–76.

Morrow, G., 1970, Proclus. A commentary on the first book of Euclid’s Elements, Princeton, Princeton University Press.

Netz, R., 2015, “Were there Epicurean mathematicians?”, Oxford Studies in Ancient Philosophy, 49: 283–319.

Simons, P., 1987, Parts. A Study in Ontology, Oxford, Clarendon Press.

Vitrac, B., 2012, “The Euclidean ideal of proof in The Elements and philological uncertainties of Heiberg’s edition of the text”, pages 69–134 in K. Chemla (ed.), The History of Mathematical Proof in Ancient Traditions, Cambridge, Cambridge University Press.

Timpanaro Cardini, M., 1970, Pseudo-Aristotele. De lineis insecabilibus, Istituto Editoriale Cisalpino, Milano-Varese.

Verde, F., 2013, Elachista. La dottrina dei minimi nell’Epicureismo, Luven, Leuven University Press.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2022-11-24

How to Cite

1.
MAFFEZIOLI, Paolo. Zeno of Sidon vindicatus: A Mereological Analysis of the Bisection of the Circle. Logic and Logical Philosophy. Online. 24 November 2022. Vol. 32, no. 4, pp. 671-690. [Accessed 5 July 2025]. DOI 10.12775/LLP.2022.032.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 32 No. 4 (2023): December

Section

Articles

License

Copyright (c) 2022 Paolo Maffezioli

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1545
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

Euclid’s Elements, Zeno of Sidon, mereology
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop