Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

An Epimorphism between Fine and Ferguson’s Matrices for Angell’s AC
  • Home
  • /
  • An Epimorphism between Fine and Ferguson’s Matrices for Angell’s AC
  1. Home /
  2. Archives /
  3. Vol. 32 No. 2 (2023): June /
  4. Articles

An Epimorphism between Fine and Ferguson’s Matrices for Angell’s AC

Authors

  • Richard Zach Department of Philosophy, University of Calgary, Calgary, Alberta, Canada https://orcid.org/0000-0003-1633-8324

DOI:

https://doi.org/10.12775/LLP.2022.025

Keywords

analytic containment, many-valued logic, matrix congruence, tableau calculus, computational algebra

Abstract

Angell’s logic of analytic containment AC has been shown to be characterized by a 9-valued matrix NC by Ferguson, and by a 16-valued matrix by Fine. It is shown that the former is the image of a surjective homomorphism from the latter, i.e., an epimorphic image. Some candidate 7-valued matrices are ruled out as characteristic of AC. Whether matrices with fewer than 9 values exist remains an open question. The results were obtained with the help of the MUltlog system for investigating finite-valued logics; the results serve as an example of the usefulness of techniques from computational algebra in logic. A tableau proof system for NC is also provided.

.

References

Angell, Richard Bradshaw, 1977, “Three systems of first degree entailment (abstract)”, The Journal of Symbolic Logic 42 (1): 147. DOI: http://dx.doi.org/10.2307/2272332

Angell, Richard Bradshaw, 1989, “Deducibility, entailment and analytic containment”, pages 119–143 in J. Norman and R. Sylvan (eds.), Directions in Relevant Logic, Dordrecht: Kluwer. DOI: http://dx.doi.org/10.1007/978-94-009-1005-8_8

Baaz, Matthias, Christian G. Fermüller, and Richard Zach, 1993, “Elimination of cuts in first-order finite-valued logics”, Journal of Information Processing and Cybernetics EIK 29 (6): 333–355. DOI: http://dx.doi.org/10.11575/PRISM/38801

Ferguson, Thomas Macaulay, 2016, “Faulty Belnap computers and subsystems of FDE”, Journal of Logic and Computation 26 (5): 1617–1636. DOI: http://dx.doi.org/10.1093/logcom/exu048

Ferguson, Thomas Macaulay, 2021, “Tableaux and restricted quantification for systems related to weak Kleene logic”, pages 3–19 in A. Das and S. Negri (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, no. 12842 in Lecture Notes in Computer Science, Cham: Springer. DOI: http://dx.doi.org/10.1007/978-3-030-86059-2_1

Fine, Kit, 2016, “Angellic content”, Journal of Philosophical Logic 45 (2): 199–226. DOI: http://dx.doi.org/10.1007/s10992-015-9371-9

Freese, Ralph, 2008, “Computing congruences efficiently”, Algebra Universalis 59 (3): 337–343. DOI: http://dx.doi.org/10.1007/s00012-008-2073-1

Grätzer, George, 1968, Universal Algebra, Princeton, NJ: van Nostrand.

Hähnle, Reiner, 1993, Automated Deduction in Multiple-Valued Logics, Oxford: Oxford University Press.

Salzer, Gernot, 1996, “MUltlog: An expert system for multiple-valued logics”, pages 50–55 in Collegium Logicum, Collegium Logicum, Vienna: Springer. DOI: http://dx.doi.org/10.1007/978-3-7091-9461-4_3

Salzer, Gernot, 2000, “Optimal axiomatizations of finitely valued logics”, Information and Computation 162 (1–2): 185–205. DOI: http://dx.doi.org/10.1006/inco.1999.2862

Salzer, Gernot et al., 2022, MUltlog v1.16a. Software program. https://github.com/rzach/multlog. DOI: http://dx.doi.org/10.5281/zenodo.6893267

Wójcicki, Ryszard, 1988, Theory of Logical Calculi: Basic Theory of Consequence Operations, No. 147 in Synthese Library, Dordrecht: Kluwer.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2022-07-27

How to Cite

1.
ZACH, Richard. An Epimorphism between Fine and Ferguson’s Matrices for Angell’s AC. Logic and Logical Philosophy. Online. 27 July 2022. Vol. 32, no. 2, pp. 161-179. [Accessed 8 July 2025]. DOI 10.12775/LLP.2022.025.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 32 No. 2 (2023): June

Section

Articles

License

Copyright (c) 2022 Richard Zach

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1346
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

analytic containment, many-valued logic, matrix congruence, tableau calculus, computational algebra
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop