Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Varieties of Relevant S5
  • Home
  • /
  • Varieties of Relevant S5
  1. Home /
  2. Archives /
  3. Vol. 32 No. 1 (2023): March /
  4. Articles

Varieties of Relevant S5

Authors

  • Shawn Standefer Department of Philosophy National Taiwan University, Taipei https://orcid.org/0000-0002-3032-5290

DOI:

https://doi.org/10.12775/LLP.2022.011

Keywords

relevant modal logic, S5, universal necessity, conceptions of necessity

Abstract

In classically based modal logic, there are three common conceptions of necessity, the universal conception, the equivalence relation conception, and the axiomatic conception. They provide distinct presentations of the modal logic S5, all of which coincide in the basic modal language. We explore these different conceptions in the context of the relevant logic R, demonstrating where they come apart. This reveals that there are many options for being an S5-ish extension of R. It further reveals a divide between the universal conception of necessity on the one hand, and the axiomatic conception on the other: The latter is consistent with motivations for relevant logics while the former is not. For the committed relevant logician, necessity cannot be the truth in all possible worlds.

References

Anderson, A. R., and N. D. Belnap, 1975, Entailment: The Logic of Relevance and Necessity, Vol. I, Princeton University Press.

Anderson, A. R., N. D. Belnap, and J. M. Dunn, 1992, Entailment: The Logic of Relevance and Necessity, Vol. II, Princeton University Press.

Bednarska, K., and A. Indrzejczak, 2015, “Hypersequent calculi for S5: The methods of cut elimination”, Logic and Logical Philosophy, 24 (3): 277–311. DOI: http://dx.doi.org/10.12775/LLP.2015.018

Bimbó, K., “Relevance logics”, 2007, pages 723–789 in D. Jacquette (ed.), Philosophy of Logic, volume 5 of Handbook of the Philosophy of Science, Elsevier. DOI: http://dx.doi.org/10.1016/B978-044451541-4/50022-1

Bimbó, K., and J. M. Dunn, 2008, Generalized Galois Logics: Relational Semantics of Nonclassical Logical Calculi, Center for the Study of Language and Information.

Blackburn, P., M. de Rijke, and Y. Venema, 2002, Modal Logic, Cambridge University Press. DOI: http://dx.doi.org/10.1017/CBO9781107050884

Brady, R., editor, 2003, Relevant Logics and Their Rivals, Volume II: A continuation of the work of Richard Sylvan, Robert Meyer, Val Plumwood and Ross Brady, Ashgate.

Brady, R. T., 1988, “A content semantics for quantified relevant logics. I”, Studia Logica, 47 (2): 111–127. DOI: http://dx.doi.org/10.1007/BF00370286

Brady, R. T., 1989, “A content semantics for quantified relevant logics. II”, Studia Logica, 48 (2): 243–257. DOI: http://dx.doi.org/10.1007/BF02770515

Braüner, T., 2000, “A cut-free Gentzen formulation of the modal logic S5”, Logic Journal of the IGPL, 8 (5): 629–643. DOI: http://dx.doi.org/10.1093/jigpal/8.5.629

Caicedo, X., G. Metcalfe, R. Rodríguez, and O. Tuyt, 2019, “The one-variable fragment of Corsi logic”, pages 70–83 in R. Iemhoff, M. Moortgat, and R. de Queiroz, editors, Logic, Language, Information, and Computation, Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: http://dx.doi.org/10.1007/978-3-662-59533-6_5

Crossley, J. N., and L. Humberstone, 1977, “The logic of “actually” ” Reports on Mathematical Logic, 8: 11–29.

Dunn, J. M., 1995, “Positive modal logic”, Studia Logica, 55 (2): 301–317. DOI: http://dx.doi.org/10.1007/BF01061239

Dunn, J. M., and G. Restall, 2002, “Relevance logic”, pages 1–136 in D. M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 6, 2nd edition, Kluwer.

Ferenz, N., 2022, “Quantified modal relevant logics”, Review of Symbolic Logic, pages 1–32. DOI: http://dx.doi.org/10.1017/s1755020321000216

Fine, K., 1988, “Semantics for quantified relevance logic”, Journal of Philosophical Logic, 17 (27–59). DOI: http://dx.doi.org/10.1007/BF00249674

Fine, K., 1989, pages 205–225, “Incompleteness for quantified relevance logics”, in J. Norman and R. Sylvan, editors, Directions in Relevant Logic, Kluwer, Dordrecht. Reprinted in [Anderson et al., 1992, §52]. DOI: http://dx.doi.org/10.1007/978-94-009-1005-8_16

Fuhrmann, A., 1990, “Models for relevant modal logics”, Studia Logica, 49 (4): 501–514. DOI: http://dx.doi.org/10.1007/BF00370161

Garson, J., 2018, “Modal logic”, in E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University, fall 2018 edition. https://plato.stanford.edu/entries/logic-modal/

Girard, P., and Z. Weber, 2015, “Bad worlds”, Thought: A Journal of Philosophy, 4 (2): 93–101. DOI: http://dx.doi.org/10.1002/tht3.162

Humberstone, L., “Logical discrimination”, 2005, pages 207–228 in J.-Y. Beziau, editor, Logica Universalis, Birkhäuser Basel. DOI: http://dx.doi.org/10.1007/3-7643-7304-0_12

Humberstone, L., 2016, Philosophical Applications of Modal Logic, College Publications, London.

Indrzejczak, A., 1996, “Cut-free sequent calculus for S5”, Bulletin of the Section of Logic, 25 (2): 95–102.

Indrzejczak, A., 1998, “Cut-free double sequent calculus for S5”, Logic Journal of the IGPL, 6 (3): 505–516. DOI: http://dx.doi.org/10.1093/jigpal/6.3.505

Indrzejczak, A., 2010, Natural Deduction, Hybrid Systems and Modal Logics, vol. 30 of Trends in Logic, Springer. DOI: http://dx.doi.org/10.1007/978-90-481-8785-0

Logan, S. A., 2019, “Notes on stratified semantics” Journal of Philosophical Logic, 48 (4): 749–786. DOI: http://dx.doi.org/10.1007/s10992-018-9493-y

Logan, S. A., 2021, “Strong depth relevance”, The Australasian Journal of Logic, 18 (6): 645–656. DOI: http://dx.doi.org/10.26686/ajl.v18i6.7081

Logan, S. A., 2022, “Depth relevance and hyperformalism”, Journal of Philosophical Logic. DOI: http://dx.doi.org/10.1007/s10992-021-09648-y

Mares, E. D., 1992, “The semantic completeness of RK”, Reports on Mathematical Logic, 26: 3–10.

Mares, E. D., 1994, “Mostly Meyer modal models”, Logique et Analyse, 146: 119–128.

Mares, E. D., 2004, Relevant Logic: A Philosophical Interpretation, Cambridge University Press.

Mares, E. D., 2020, “Relevance logic”, in E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University, winter 2020 edition. https://plato.stanford.edu/entries/logic-relevance/

Mares, E. D., and R. Goldblatt, 2006, “An alternative semantics for quantified relevant logic”, The Journal of Symbolic Logic, 71 (1): 163–187. DOI: http://dx.doi.org/10.2178/jsl/1140641167

Mares, E. D., and R. K. Meyer, 1993, “The semantics of R4”, Journal of Philosophical Logic, 22 (1): 95–110. DOI: http://dx.doi.org/10.1007/BF01049182

Mares, E. D., and S. Standefer, 2017, “The relevant logic E and some close neighbours: A reinterpretation”, IfCoLog Journal of Logics and Their Applications, 4 (3): 695–730.

Meyer, R. K., 1966, “Topics in modal and many-valued logic”, PhD thesis, University of Pittsburgh.

Meyer, R. K., and E. D. Mares, 1993, “Semantics of entailment 0”, pages 239–258 in P. Schroeder-Heister and K. Došen, editors, Substructural Logics, Oxford Science Publications.

Mints, G., 1992, A Short Introduction to Modal Logic, Center for the Study of Language and Information.

Ohnishi, M., and K. Matsumoto, 1957, “Gentzen method in modal calculi”, Osaka Mathematical Journal, 9 (2): 113–130.

Parks, Z., and M. Byrd, 1989, “Relevant implication and Leibnizian necessity”, pages 179–184 in J. Norman and R. Sylvan, editors, Directions in Relevant Logic, Kluwer Academic Publishers. DOI: http://dx.doi.org/10.1007/978-94-009-1005-8_13

Poggiolesi, F., 2008, “A cut-free simple sequent calculus for modal logic S5”, Review of Symbolic Logic, 1 (1): 3–15. DOI: http://dx.doi.org/10.1017/S1755020308080040

Poggiolesi, F., 2011, Gentzen Calculi for Modal Propositional Logic, volume 32 of Trends in Logic, Springer. DOI: http://dx.doi.org/10.1007/978-90-481-9670-8

Porte, J., 1981, “The deducibilities of S5”, Journal of Philosophical Logic, 10 (4): 409–422. DOI: http://dx.doi.org/10.1007/BF00248735

Prawitz, D., 1965, Natural Deduction: A Proof-Theoretical Study, Almqvist and Wicksell.

Priest, G., 2008, An Introduction to Non-Classical Logic: From If to Is, Cambridge University Press. DOI: http://dx.doi.org/10.1017/CBO9780511801174

Priest, G., and R. Sylvan, 1992, “Simplified semantics for basic relevant logics”, Journal of Philosophical Logic, 21 (2): 217–232. DOI: http://dx.doi.org/10.1007/BF00248640

Read, S., 1988, Relevant Logic: A Philosophical Examination of Inference, Blackwell.

Restall, G., 1993, “Simplified semantics for relevant logics (and some of their rivals)”, Journal of Philosophical Logic, 22 (5): 481–511. DOI: http://dx.doi.org/10.1007/BF01349561

Restall, G., 2000, An Introduction to Substructural Logics, Routledge.

Restall, G., 2007, “Proofnets for S5: Sequents and circuits for modal logic”, pages 151–172 in C. Dimitracopoulos, L. Newelski, and D. Normann, editors, Logic Colloquium 2005, Cambridge: Cambridge University Press.

Restall, G., and T. Roy, 2009, “On permutation in simplified semantics”, Journal of Philosophical Logic, 38 (3): 333–341. DOI: http://dx.doi.org/10.1007/s10992-009-9104-z

Robles, G., and J. M. Méndez, 2011, “A class of simpler logical matrices for the variable-sharing property”, Logic and Logical Philosophy, 20 (3): 241–249. DOI: http://dx.doi.org/10.12775/LLP.2011.014

Robles, G., and J. M. Méndez, 2012, “A general characterization of the variable sharing property by means of logical matrices”, Notre Dame Journal of Formal Logic, 53 (2): 223–244. DOI: http://dx.doi.org/10.1215/00294527-1715707

Routley, R., and R. K. Meyer, 1972, “The semantics of entailment – II”, Journal of Philosophical Logic, 1 (1): 53–73. DOI: http://dx.doi.org/10.1007/BF00649991

Routley, R., V. Plumwood, R. K. Meyer, and R. T. Brady, 1982, Relevant Logics and Their Rivals, volume 1, Ridgeview.

Sedlár, I., 2015, “Substructural epistemic logics.”, Journal of Applied Non-Classical Logics, 25 (3): 256–285. DOI: http://dx.doi.org/10.1080/11663081.2015.1094313

Seki, T., 2003, “A Sahlqvist theorem for relevant modal logics”, Studia Logica, 73 (3): 383–411. DOI: http://dx.doi.org/10.1023/A:1023335229747

Slaney, J. K., 1987, “Reduced models for relevant logics without WI”, Notre Dame Journal of Formal Logic, 28 (3): 395–407. DOI: http://dx.doi.org/10.1305/ndjfl/1093637560

Standefer, S., 2020, “Actual issues for relevant logics”, Ergo, 7 (8): 241–276. DOI: http://dx.doi.org/10.3998/ergo.12405314.0007.008

Standefer, S., 2021, “An incompleteness result for modal relevant logics”, Notre Dame Journal of Formal Logic, 62 (4): 669–681. http://dx.doi.org/DOI: 10.1215/00294527-2021-0035

Standefer, S., 2022, “What is a relevant connective?”, Journal of Philosophical Logic. Forthcoming.

Standefer, S., 202x, “Completeness via metacompleteness”, in K. Bimbó, editor, Essays in Honor of J. Michael Dunn, College Publications. Forthcoming.

Weber, Z., G. Badia, and P. Girard, 2016, “What is an inconsistent truth table?”, Australasian Journal of Philosophy, 94 (3): 533–548. DOI: http://dx.doi.org/10.1080/00048402.2015.1093010

Yang, E., 2013, “R and relevance principle revisited”, Journal of Philosophical Logic, 42 (5): 767–782. DOI: http://dx.doi.org/10.1007/s10992-012-9247-1

Logic and Logical Philosophy

Downloads

  • PDF

Published

2022-03-08

How to Cite

1.
STANDEFER, Shawn. Varieties of Relevant S5. Logic and Logical Philosophy. Online. 8 March 2022. Vol. 32, no. 1, pp. 53-80. [Accessed 7 July 2025]. DOI 10.12775/LLP.2022.011.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 32 No. 1 (2023): March

Section

Articles

License

Copyright (c) 2022 Logic and Logical Philosophy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1658
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

relevant modal logic, S5, universal necessity, conceptions of necessity
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop