Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Defining Measures in a Mereological Space (an exploratory paper)
  • Home
  • /
  • Defining Measures in a Mereological Space (an exploratory paper)
  1. Home /
  2. Archives /
  3. Vol. 31 No. 1 (2022): March /
  4. Articles

Defining Measures in a Mereological Space (an exploratory paper)

Authors

  • Giuseppina Barbieri Department of Mathematics, University of Salerno https://orcid.org/0000-0002-6460-1951
  • Giangiacomo Gerla Department of Mathematics, University of Salerno

DOI:

https://doi.org/10.12775/LLP.2021.005

Keywords

connection structures, measures, mereological space, mereology, region-based theories of space

Abstract

We explore the notion of a measure in a mereological structure and we deal with the difficulties arising. We show that measure theory on connection spaces is closely related to measure theory on the class of ortholattices and we present an approach akin to Dempster’s and Shafer’s. Finally, the paper contains some suggestions for further research.

References

Arntzenius, F., “Gunk, topology, and measure”, pages 225–247 in D. Zimmerman (ed.), Oxford Studies in Metaphysics, vol. 4, Oxford: Oxford University Press, 2008. Also: “Gunk, topology and measure”, pages 327–343, Chapter 16, in D. DeVidi, M. Hallett and P. Clark (eds.), Logic, Mathematics, Philosophy: Vintage Enthusiasms. Essays in Honour of John L. Bell, vol. 75 of series “The Western Ontario Series in Philosophy of Science”, Springer, 2011. DOI: https://doi.org/10.1007/978-94-007-0214-1_16

Arntzenius, F., Space, Time, and Stuff, Oxford: Oxford University Press, 2012. DOI: https://doi.org/10.1093/acprof:oso/9780199696604.001.0001

Barbieri, G., and G. Gerla, “Measures in Euclidean point-free space” (in progress).

Biacino, L., and G. Gerla, “Connection structures”, Notre Dame Journal of Formal Logic 32, 2 (1991): 242–247. DOI: https://doi.org/10.1305/ndjfl/1093635748

Clarke, B., “A calculus of individuals based on connnection”, Notre Dame Journal of Formal Logic 22, 3 (1981): 204–218.

Clarke, B., “Individuals and points”, Notre Dame Journal of Formal Logic 26, 1 (1985): 61–75. DOI: https://doi.org/10.1305/ndjfl/1093870761

Dempster, A.P., “Upper and lower probabilities induced by a multivalued mapping”, Ann. Math. Stat. 38 (1967): 325–339.

Dempster, A.P., “A generalization of Bayesian inference”, Journal of the Royal Statistical Society, Series B 30 (1968): 205–247.

Gerla, G., and R. Gruszczyński, “Point-free geometry, ovals, and half-planes”, Rev. Symb. Log. 10, 2 (2017): 237–258. DOI: https://doi.org/10.1017/S1755020316000423

Gruszczyński, R., and A. Pietruszczak, “The relations of supremum and mereological sum in partially ordered sets”, pages 105–122 in C. Calosi and P. Graziani (eds.), Mereology and the Science, Parts and Wholes in the Contemporary Scientific Context, vol. 371 of Synthese Library, Springer, 2014. DOI: https://doi.org/10.1007/978-3-319-05356-1_6

Gruszczyński, R., and A. Varzi, “Mereology then and now”, Logic and Logical Philosophy 24 (2015): 409–427. DOI: https://doi.org/10.12775/LLP.2015.024

Horn, A., and A. Tarski, “Measures in Boolean algebras”, Transactions of the American Mathematical Society 64, 3 (1948): 467–497. DOI: https://doi.org/10.1090/S0002-9947-1948-0028922-8

Lando, T., and D. Scott, “A calculus of regions respecting both measure and topology”, Journal of Philosophical Logic 14 (2019): 825–850. DOI: https://doi.org/10.1007/s10992-018-9496-8

Leśniewski, S., “On the foundations of mathematics”, Translated from the Polish and with an introduction by Vito F. Sinisi, Topoi 2, 1 (1983): 3–52.

Pietruszczak, A., Metamereology, Toruń: The Nicolaus Copernicus University Scientific Publishing House, 2018. DOI: https://doi.org/10.12775/3961-4

Pietruszczak, A., Foundations of the Theory of Parthood. A Study of Mereology, vol. 54 of series “Trends in Logic”, Springer International Publishing, 2020. DOI: https://doi.org/10.1007/978-3-030-36533-2

Roeper, P., “Region-based topology”, Journal of Philosophical Logic 26 (1997): 251–309. DOI: https://doi.org/10.1023/A:1017904631349

Russell, J., “The structure of gunk: Adventures in the ontology of space”, pages 248–274 in Oxford Studies in Metaphysics, vol. 4, Oxford: Oxford University Press, 2008.

Shafer, G., A Mathematical Theory of Evidence, Princeton University Press, 1976. DOI: https://doi.org/10.2307/j.ctv10vm1qb

Tarski, A., “Les fondaments de la géométrie des corps”, pages 29–33 in Księga Pamiątkowa Pierwszego Polskiego Zjazdu Matematycznego, suplement to Annales de la Société Polonaise de Mathématique, Kraków, 1929.

Whitehead, A.N., An Enquiry Concerning the Principles of Natural Knowledge, Cambridge University Press, 1919.

Whitehead, A.N., The Concept of Nature, Cambridge University Press, 1920. DOI: https://doi.org/10.1017/CBO9781316286654

Whitehead, A.N., Process and Reality, New York: The Macmillan Co., 1929.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2021-03-23 — Updated on 2021-10-01

How to Cite

1.
BARBIERI, Giuseppina and GERLA, Giangiacomo. Defining Measures in a Mereological Space (an exploratory paper). Logic and Logical Philosophy. Online. 1 October 2021. Vol. 31, no. 1, pp. 57-74. [Accessed 6 July 2025]. DOI 10.12775/LLP.2021.005.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 31 No. 1 (2022): March

Section

Articles

License

Copyright (c) 2021 Logic and Logical Philosophy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1409
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

connection structures, measures, mereological space, mereology, region-based theories of space
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop