Pieces of mereology
DOI:
https://doi.org/10.12775/LLP.2005.014Keywords
mereology, mereological structures, axioms of mereology, collective sets, mereological sets, mereological fusions, mereological partsAbstract
In this paper we will treat mereology as a theory of some structures that are not axiomatizable in an elementary language (one of the axioms will contain the predicate ‘belong’ (‘∈’) and we will use a variable ranging over the power set of the universe of the structure). A mereological structure is an ordered pair M = <M,⊑>, where M is a non-empty set and ⊑ is a binary relation in M, i.e., ⊑ is a subset of M × M. The relation ⊑ is a relation of being a mereological part (instead of ‘<x,y> ∈ ⊑’ we will write ‘x ⊑ y’ which will be read as “x is a part of y”). We formulate an axiomatization of mereological structures, different from Tarski’s axiomatization as presented in [10] (Tarski simplified Leśniewski’s axiomatization from [6]; cf. Remark 4). We prove that these axiomatizations are equivalent (see Theorem 1). Of course, these axiomatizations are definitionally equivalent to the very first axiomatization of mereology from [5], where the relation of being a proper part ⊏ is a primitive one.
Moreover, we will show that Simons’ “Classical Extensional Mereology” from [9] is essentially weaker than Leśniewski’s mereology (cf. Remark 6).
References
Breitkopf, A., “Axiomatisierung einiger Begriffe aus Nelson Goodmans The Structure of Appearance”, Erkenntnis 12, 229–247.
Eberle, R., “Some complete calculi of individuals”, NDJFL 8 (1967), 267–278.
Goodman, N. The Structure of Appearance, Cambridge Massachusetts 1951.
Leonard, H. S., N. Goodman, “The calculus of individuals and its uses”, Journal of Symbolic Logic, vol. 5, 2 (1940), 45–55. DOI: http://dx.doi.org/10.2307/2266169
Leśniewski, S., “O podstawach matematyki. Rozdział IV”, Przegląd Filozoficzny XXXI (1928), 261–291. English version: “On the foundations of mathematics. Chapter IV”, pp. 226–263 in: Collected Works, S.J. Surma, J.T. Srzednicki and D.I. Barnett (eds.), PWN – Kluwer Academic Publishers, Dordrecht, 1991.
Leśniewski, S., “O podstawach matematyki. Rozdziały VI-IX”, Przegląd Filozoficzny XXXIII (1930), 77–105. English version: “On the fundations of mathematics. Chapters VI-IX”, pp. 313–349 in: Collected Works, S.J. Surma, J.T. Srzednicki and D.I. Barnett (eds.), PWN – Kluwer Academic Publishers, Dordrecht, 1991.
Pietruszczak, A., “Kawałki mereologii” (Pieces of Mereology), pp. 357–374 in: Logika & Filozofia Logiczna. FLFL 1996–1998, J. Perzanowski and A. Pietruszczak (eds.), Nicolaus Copernicus University Press, Toruń 2000.
Pietruszczak, A., Metamereologia (Metamereology), Nicolaus Copernicus University Press, Toruń 2000.
Simons, P. M., Parts. A Study in Ontology, Oxford 1987.
Tarski, A., “Les fondements de la géometrie des corps”, pp. 29–30 in: Księga Pamiątkowa Pierwszego Zjazdu Matematycznego, Kraków 1928. English translation: “Foundations of the geometry of solid”, pp. 24–29 in: Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford 1956.
Tarski, A., “Zur Grundlegung der Booleschen Algebra. I”, Fundamenta Mathematicae 24, 177–198. English translation “On the foundations of Boolean algebra”, pp. 320–341 in: Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford 1956.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 542
Number of citations: 0