Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Antinomicity and the axiom of choice. A chapter in antinomic mathematics
  • Home
  • /
  • Antinomicity and the axiom of choice. A chapter in antinomic mathematics
  1. Home /
  2. Archives /
  3. No. 4 (1996) /
  4. Articles

Antinomicity and the axiom of choice. A chapter in antinomic mathematics

Authors

  • Florencio G. Asenjo University of Pittsburgh

DOI:

https://doi.org/10.12775/LLP.1996.003

Abstract

The present work is an attempt to break ground in mathematics proper, armed with the accepting view just described. Specifically, we shall examine various versions of antinomic set theory, in particular the axiom of choice, keeping the presentation as intuitive as possible, more in the manner of a nineteenth century paper than as a thoroughly formalized system. The reason for such a presentation is the conviction that at this point it should be the mathematics that eventually determines the logic, rather than the other way around.

Author Biography

Florencio G. Asenjo, University of Pittsburgh

Department of Mathematics

References

F. G. Asenjo, “The Idea of a Calculus of Antinomies”, La Plata, 1953.

F. G. Asenjo, “A Calculus of Antinomies”, Notre Dame Journal of Formal Logic, VII, 1966., p. 103.

F. G. Asenjo and J. Tamburino, “Logic of Antinomies”, Notre Dame Journal of Formal Logic, 1975.

F. G. Asenjo, “Formalizing Multiple Location”, [in:] Non-Classical Logics, Model Theory, and Computability, edited by A. I. Arruda, N. C. A. da Costa, and R. Chuaqui, North Holland, Amsterdam, 1977, pp. 25–36.

F. G. Asenjo, “Toward an Antinomic Mathematics”, in [17].

F. G. Asenjo, “Continua Without Sets”, Logic and Logical Philosophy, 1993, Vol. 1, pp. 95–128.

M. J. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, Berlin, 1985.

E. W. Beth, The Foundations of Mathematics, North Holland, Amsterdam, 1958.

G. Frege, “A critical elucidation of some points in E. Schroeder’s Algebra der Logic”, [in:] Translations from the Philosophical Writings of Gottlob Frege, edited by P. Geach & M. Black, Oxford, 1977, pp. 86–106.

K. Gödel, “Russell’s Mathematical Logic”, The Philosophy of Bertrand Russell, edited by P. A. Schilpp, Tudor, 1944.

J. van Heijenoort, From Frege to G¨odel, Harvard University Press, Cambridge, 1967.

T. Jech, The Axiom of Choice, North Holland, Amsterdam, 1973.

A. Kolmogorov, “On the principle of excluded middle”, in [11].

E. Mendelson, Introduction to Mathematical Logic, Wadsworth, Monterey, 1987.

G. H. Moore, Zermelo’s Axiom of Choice, Springer-Verlag, New York, 1982.

J. von Neumann, “An Axiomatizaton of Set Theory”, in [11], pp. 421–423.

Paraconsistent Logic: Essays on the Inconsistent, edited by G. Priest, R. Routley, and J. Norman, Philosophia Verlag, Munich, 1989.

A. Robinson, Introduction to Model Theory and to the Metamathematics of Algebra, North Holland, Amsterdam, 1965.

H. Rubin & J. Rubin, Equivalents of the Axiom of Choice, North Holland, Amsterdam, 1963.

B. Russell, An Enquiry into Meaning and Truth, Allen & Unwin, London, 1940.

A. N. Whitehead and B. Russell, Principia Mathematica, 1927.

D. Wrinch, “On Mediate Cardinals”, American Journal of Mathematics, 1923, Vol. 45, pp. 87–92.

Downloads

  • PDF

Published

2003-01-27

How to Cite

1.
ASENJO, Florencio G. Antinomicity and the axiom of choice. A chapter in antinomic mathematics. Logic and Logical Philosophy. Online. 27 January 2003. Vol. 4, no. 4, pp. 53-95. [Accessed 18 May 2025]. DOI 10.12775/LLP.1996.003.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 4 (1996)

Section

Articles

Stats

Number of views and downloads: 524
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop