Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Reaching Classicality through Transitive Closure
  • Home
  • /
  • Reaching Classicality through Transitive Closure
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Reaching Classicality through Transitive Closure

Authors

  • Quentin Blomet Institut Jean-Nicod (CNRS, ENS-PSL, EHESS), PSL University, Paris, France; and Department of Philosophy, University of Greifswald, Germany https://orcid.org/0009-0008-2971-9509
  • Bruno Da Ré Department of Philosophy, University of Buenos Aires, Argentina and IIF-SADAF-CONICET, National Scientific and Technical Research Council (CONICET), Argentina https://orcid.org/0000-0002-2958-7840

DOI:

https://doi.org/10.12775/LLP.2025.019

Keywords

three-valued logics, transitive closure, Non-classical logics, strict-tolerant logic, logic of paradox, Strong Kleene logic, Weak Kleene logic

Abstract

Recently, Da Ré, Szmuc, Chemla and Égré (2024) showed that all logics based on Boolean Normal monotonic three-valued schemes coincide with classical logic when defined using a strict-tolerant standard (st). Conversely, they proved that under a tolerant-strict standard (ts), the resulting logics are all empty. Building on these results, we show that classical logic can be obtained by closing under transitivity the union of two logics defined over (potentially different) Boolean normal monotonic schemes, using a strict-strict standard (ss) for one and a tolerant-tolerant standard (tt) for the other, with the first of these logics being paracomplete and the other being paraconsistent. We then identify a notion dual to transitivity that allows us to characterize the logic TS as the dual transitive closure of the intersection of any two logics defined over (potentially different) Boolean normal monotonic schemes, using an ss standard for one and a tt standard for the other. Finally, we expand on the abstract relations between the transitive closure and dual transitive closure operations, showing that they give rise to lattice operations that precisely capture how the logics discussed relate to one another.

References

Asenjo, F. G., 1966, “A calculus of antinomies”, Notre Dame Journal of Formal Logic, 7(1): 103–105. DOI: https://doi.org/10.1305/ndjfl/1093958482

Avron, A., and I. Lev, 2005, “Non-deterministic multiple-valued structures”, Journal of Logic and Computation, 15(3): 241–261. DOI: https://doi.org/10.1093/logcom/exi001

Beaver, D., and E. Krahmer, 2001, “A partial account of presupposition projection”, Journal of Logic, Language and Information, 10(2): 147–182. DOI: https://doi.org/10.1023/A:1008371413822

Blomet, Q., and P. Égré, 2024, “ST and TS as product and sum”, Journal of Philosophical Logic, 53(6): 1673–1700. DOI: https://doi.org/10.1007/s10992-024-09778-z

Bochvar, D. A., 1981, “On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus”, History and Philosophy of Logic 2(1–2): 87–112. English translation of Bochvar’s paper of 1938. DOI: https://doi.org/10.1080/01445348108837023

Carnielli, W., J. Marcos, and S. De Amo, 2000, “Formal inconsistency and evolutionary databases”, Logic and Logical Philosophy, 8: 115–152. DOI: https://doi.org/10.12775/LLP.2000.008

Chemla, E., P. Égré and B. Spector, 2017, “Characterizing logical consequence in many-valued logic”, Journal of Logic and Computation, 27(7): 2193–2226. DOI: https://doi.org/10.1093/logcom/exx001

Cobreros, P., P. Egré, E. Ripley and R. Van Rooij, 2012, “Tolerant, classical, strict”, Journal of Philosophical Logic, 41(2): 347–385. DOI: https://doi.org/10.1007/s10992-010-9165-z

Cobreros, P., P. Égré, E. Ripley and R. Van Rooij, 2013, “Reaching transparent truth”, Mind, 122(488): 841–866. DOI: https://doi.org/10.1093/mind/fzt110

Da Ré, B., D. Szmuc, E. Chemla and P. Égré, 2024, “On three-valued presentations of classical logic”, The Review of Symbolic Logic, 17(3): 682–704. DOI: https://doi.org/10.1017/S1755020323000114

Dunn, J. M., 1976, “A Kripke-style semantics for R-mingle using a binary accessibility relation”, Studia Logica, 35(2): 163–172. DOI: https://doi.org/10.1007/BF02120878

Ferguson, T. M., 2023, “Monstrous content and the bounds of discourse”, Journal of Philosophical Logic, 52(1): 111–143. DOI: https://doi.org/10.1007/s10992-022-09666-4

Field, H., 2008, Saving Truth from Paradox, OUP: Oxford. DOI: https://doi.org/10.1093/acprof:oso/9780199230747.001.0001

Font, J. M., 2016, Abstract Algebraic Logic: An Introductory Textbook, College Publications.

Halldén, S., 1949, The Logic of Nonsense, Uppsala Universitets Arsskrift, Sweden.

George, B. R., 2014, “Some remarks on certain trivalent accounts of presupposition projection”, Journal of Applied Non-Classical Logics, 24(1–2): 86–117. DOI: https://doi.org/10.1080/11663081.2014.911521

Kadlečiková, J., and T. M. Ferguson, 2024, “Counterexample sufficiency in modifications to strict-tolerant logics”, pages 78–84 in 2024 IEEE 54th International Symposium on Multiple-Valued Logic (ISMVL), IEEE. DOI: https://doi.org/10.1109/ISMVL60454.2024.00025

Kleene, S. C., 1952, Introduction to Metamathematics, North Holland, Van Nostrand: Amsterdam, New York.

Makinson, D. C., 1973, Topics in Modern Logic. Methuen: London.

Pailos, F., B. and Da Ré, 2023, Metainferential Logics, Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-44381-7

Peters, S., 1979, “A truth-conditional formulation of Karttunen’s account of presupposition”, Synthese, 40(2): 301–316. DOI: https://doi.org/10.1007/BF00485682

Přenosil, A., 2023, “The lattice of super-Belnap logics”, The Review of Symbolic Logic, 16(1): 114–163. DOI: https://doi.org/10.1017/S1755020321000204

Priest, G., 1979. “The logic of paradox”, Journal of Philosophical Logic, 8(1): 219–241. DOI: https://doi.org/10.1007/BF00258428

Ripley, E., 2012, “Conservatively extending classical logic with transparent truth”, The Review of Symbolic Logic, 5(2): 354–378. DOI: https://doi.org/10.1017/S1755020312000056

Rivieccio, U., 2012, “An infinity of super-Belnap logics”, Journal of Applied Non-Classical Logics, 22(4): 319–335. DOI: https://doi.org/10.1080/11663081.2012.737154

Szmuc, D., and T. M. Ferguson, 2021, “Meaningless divisions”, Notre Dame Journal of Formal Logic, 62(3): 399–424. DOI: https://doi.org/10.1215/00294527-2021-0022

Wintein, S., 2016, “On all strong Kleene generalizations of classical logic”, Studia Logica, 104(3): 503–545. DOI: https://doi.org/10.1007/s11225-015-9649-5

Wójcicki, R., 1988, Theory of Logical Calculi: Basic Theory of Consequence Operations, Vol. 199, Springer Science and Business Media.

Downloads

  • PDF

Published

2025-10-01

How to Cite

1.
BLOMET, Quentin and DA RÉ, Bruno. Reaching Classicality through Transitive Closure. Logic and Logical Philosophy. Online. 1 October 2025. pp. 1-27. [Accessed 21 December 2025]. DOI 10.12775/LLP.2025.019.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

License

Copyright (c) 2025 Quentin Blomet, BRUNO DA RE

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 322
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

three-valued logics, transitive closure, Non-classical logics, strict-tolerant logic, logic of paradox, Strong Kleene logic, Weak Kleene logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop