Is p and ¬p a Contradiction?
DOI:
https://doi.org/10.12775/LLP.2025.004Keywords
contradiction, negation, paraconsistent logic, Newton da Costa, antilogy, Wittgenstein, universal logic, square of opposition, symbolismAbstract
We discuss how to formulate and understand contradiction. After emphasizing the importance of a correct formulation for a notion as important as the notion of contradiction, we present a variety of formulations of the proposition corresponding to “p and ¬p”, which is often considered as expressing contradiction. We then discuss the standard example of contradiction in classical logic and the way Wittgenstein defines contradiction in the Tractatus, not using negation. After that, we point out the variety of connectives which are nowadays called negations and often denoted by the same symbol, underlying that negations obeying neither the law of non-contradiction, nor the excluded middle are considered part of the family. We then recall how contradiction is defined within the theory of oppositions, drawing attention to the fact that this theory is against considering that the pair p and ¬p forms a contradiction if we take into account the whole family of negations, including paraconsistent negations. At the end of the journey, we set up a list of notions involving negation and contradiction and propose a terminology that may be useful to dispel confusion and promote understanding.
References
Avron, A., O. Arieli and A. Zamansky, Theory of Effective Propositional Paraconsistent Logics, College Publications, London, 2018.
Basu, S., and S. Roy, “Negation-free definitions of paraconsistency”, pages 150–159 in A. Indrzejczak and M. Zawidzki (eds.), 10th International Conference on Non-Classical Logics. Theory and Applications (NCL 2022), EPTCS 358, 2022. DOI: https://doi.org/10.4204/EPTCS.358.11
Becker Arenhart, J. R., “Liberating paraconsistency from contradiction”, Logica Universalis, 9 (2015): 523–544. DOI: https://doi.org/10.1007/s11787-015-0131-y
Beziau, J.-Y., “Universal logic”, pages 73–93 in Logica’94 – Proceedings of the 8th International Symposium, T. Childers and O. Majer (eds), Prague, 1994.
Beziau, J.-Y., “A sequent calculus for Łukasiewicz’s three-valued logic based on Suszko’s bivalent semantics”, Bulletin of the Section of Logic, 28 (1999): 89–97.
Beziau, J.-Y., “What is paraconsistent logic?”, pages 95–111 in D. Batens et al. (eds.), Frontiers of Paraconsistent Logic, Research Studies Press, Baldock, 2000.
Beziau, J.-Y., “S5 is a paraconsistent logic and so is first-order classical logic”, Logical Investigations, 9, (2002): 301–309.
Beziau, J.-Y., “New light on the square of oppositions and its nameless corner”, Logical Investigations, 10 (2003): 218–232.
Beziau, J.-Y., “Paraconsistent logic! (A reply to Slater)”, Sorites, 17 (2006): 17–26.
Beziau, J.-Y., “Bivalent semantics for de Morgan logic (The uselessness of four-valuedness)”, pages 391–402 in W. A. Carnielli, M. E. Coniglio, I. M. L. D’Ottaviano (eds.), The Many Sides of Logic, College Publication, London, 2009.
Beziau, J.-Y., “The power of the hexagon”, Logica Universalis, 6 (2012): 1–43. DOI: https://doi.org/10.1007/s11787-012-0046-9
Beziau, J.-Y., “The new rising of the square of opposition”, pages 6-24 in J.-Y. Beziau and D. Jacquette (eds.), Around and Beyond the Square of Opposition, Birkhäuser, Basel, 2012. DOI: https://doi.org/10.1007/978-3-0348-0379-3_1
Beziau, J.-Y., “Round squares are no contradictions”, pages 39–55 in New Directions in Paraconsistent Logic, Springer, New Delhi, 2015. DOI: https://doi.org/10.1007/978-81-322-2719-9_2
Beziau, J.-Y., “Disentangling contradiction from contrariety via incompatibility”, Logica Universalis, 10 (2016): 157–170. DOI: https://doi.org/10.1007/s11787-016-0151-2
Beziau, J.-Y., “Hartley Slater and false contradictions”, South American Journal of Logic, 2 (2016): 101–107.
Beziau, J.-Y., “MANY 1 – A transversal imaginative journey across the realm of mathematics”, pages 259-287 in M. Chakraborty and M. Friend (eds.), Special Issue on Mathematical Pluralism of the Journal of Indian Council of Philosophical Research, 34 (2017). DOI: https://doi.org/10.1007/s40961-016-0081-7
Beziau, J.-Y., “The pyramid of meaning”, in J. Ceuppens, H. Smessaert, J. van Craenenbroeck and G. Vanden Wyngaerd (eds.), A Coat of Many Colours – D60, Brussels, 2018.
Beziau, J.-Y., “Ex incompatibilitate sequitur quodlibet (the explosiveness of incompatibility and the compatibility of negation)”, pages 23-39 in T. Madigan and J.-Y. Beziau (eds.), Universal Logic, Ethics, and Truth – Essays in Honor of John Corcoran (1937–2021), Birkhäuser, Cham, 2024. DOI: https://doi.org/10.1007/978-3-031-44461-6_3
Beziau, J.-Y., and G. Basti, ‘The square of opposition: A cornerstone of thought”, pages 3-12 in The Square of Opposition: A Cornerstone of Thought, Birkhäuser, Basel, 2017. DOI: https://doi.org/10.1007/978-3-319-45062-9_1
Beziau, J.-Y., and S. Gerogiorgakis, “The many dimensions of the square of opposition”, pages 9–16 in New Dimensions of the Square of Opposition, Philosophia Verlag, Munich, 2017.
Beziau, J.-Y., and R. Giovagnoli, “The vatican square”, Logica Universalis, 10 (2016): 135–141. DOI: https://doi.org/10.1007/s11787-016-0152-1
Beziau, J.-Y., and A. Moretti, “Smurfing the square of opposition”, Logica Universalis, 18 (2024): 1–9. DOI: https://doi.org/10.1007/s11787-024-00357-z
Beziau, J.-Y., and J. Lemanski, “The cretan square”, Logica Universalis, 14 (2020): 1–5. DOI: https://doi.org/10.1007/s11787-020-00247-0
Beziau, J.-Y., and G. Payette, “Preface”, pages 9–22 in The Square of Opposition – A General Framework for Cognition, Peter Lang, Bern, 2012.
Beziau, J.-Y., and S. Read, “Square of opposition: A diagram and a theory in historical Pperspective”, Preface of a special issue of History and Philosophy of Logic on the square of oppostion 35 (2014): 315–316. DOI: https://doi.org/10.1080/01445340.2014.917836
Beziau, J.-Y., and I. Vandoulakis, “The square of opposition: past, present, future”, pages 1–14 in J.-Y.Beziau and I. Vandoulakis (eds.), The Exoteric Square of Opposition, Birkhäuser, Basel, 2021. DOI: https://doi.org/10.1007/978-3-030-90823-2_1
Blanché, R., Structures Intellectuelles. Essai sur l’Organisation Systématique des Concepts, Vrin, Paris, 1966.
da Costa, N. C. A., and J.-Y. Beziau, “Théorie de la Valuation”, Logique et Analyse, 146 (1994): 95–117.
da Costa, N. C. A., and J.-Y. Beziau, “Overclassical logic”, Logique et Analyse, 157 (1997): 31–44.
de Saussure, F., Cours de linguistique Générale, Payot, Lausanne and Paris, 1916.
Dewar, R., “Les panneaux de signalisation”, in J.-Y.Beziau (ed.), La Pointure du Symbole, Petra, Paris, 2014.
Frege, G., Begriffsschrift, eine der Arithmetischen Nachgebildete Formelsprache des Reinen Denkens, Louis Nebert, Halle a. S. 1879.
Frege, G., “Über Sinn und Bedeutung”, Zeitschrift für Philosophie und philosophische Kritik, 100 (1892): 25–50.
Freud, S., “Die Verneinung”, Imago – Zeitschrift für die Anwendung der Psychoanalyse auf die Geisteswissenschaften, 11 (1925): 217–221.
Halmos, P., Naive Set Theory, D. Van Nostrand, Princeton, 1960.
Halmos, P., “How to write mathematics”, L’Enseignement Mathématique, 16 (1970): 123–152.
Loparić A., and N. C. A. da Costa, “Paraconsistency, paracompleteness, and valuations”, Logique et Analyse, 27 (1984): 119–131.
Łukasiewicz, J., “O logice trójwartosciowej”, Ruch Filozoficzny, 5 (1920): 170–171.
Pascal, B., Les Provinciales, Pierre de la Vallée, Cologne, 1657.
Priest, G., In Contradiction, Martinus Nijhoff, Dordrecht, 1987.
Quesada, F. M., “In the name of paraconsistency”, Annotated and translated by L. F. Bartolo Alegre, South American Journal of Logic, 6 (2020): 163–171.
Slater, B. H., “Paraconsistent logics?”, Journal of Philosophical logic, 24 (1995): 451–454. DOI: https://doi.org/10.1007/BF01048355
Wittgenstein, L. “Logisch-Philosophische Abhandlung”, Annalen der Naturphilosophie, 14 (1921): 185–262.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jean-Yves Beziau

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 128
Number of citations: 0