Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Paradoxes versus Contradictions in Logic of Sentential Operators
  • Strona domowa
  • /
  • Paradoxes versus Contradictions in Logic of Sentential Operators
  1. Strona domowa /
  2. Archiwum /
  3. Prace online /
  4. Artykuły

Paradoxes versus Contradictions in Logic of Sentential Operators

Autor

  • Michał Walicki Department of Informatics, University of Bergen

DOI:

https://doi.org/10.12775/LLP.2024.002

Słowa kluczowe

sentential operators, semantic and intensional paradoxes, classical logic, paraconsistent semantics, (semi)kernels of digraphs

Abstrakt

Classical logic, of first or higher order, is extended with sentential operators and quantifiers, interpreted substitutionally over unrestricted substitution class. Operators mark a single layered, consistent metalanguage. Self-reference, arising from substitutional quantification over sentences, allows to express paradoxes which, unlike contradictions, do not lead to explosion. Semantics of the resulting language, using semi-kernels of digraphs, is non-explosive yet two-valued and has classical semantics as a special case for clasically consistent theories. A complete reasoning is obtained by extending LK with two rules for sentential quantifiers. Adding (cut) yields a complete system for the explosive semantics.

Bibliografia

Azzouni, J., 2003, ‘The strengthened liar, the expressive strength of natural languages, and regimentation’, The Philosophical Forum 34 (3–4): 329–350. DOI: http://dx.doi.org/10.1111/1467-9191.00142

Båve, A., 2012, “On using inconsistent expressions”, Erkenntins 77 (1): 133–148. DOI: http://dx.doi.org/10.1007/s10670-011-9310-2

Beringer, T., and T. Schindler, 2017, “A graph-theoretic analysis of the semantic paradoxes”, The Bulletin of Symbolic Logic 23 (4): 442–492. DOI: http://dx.doi.org/10.1017/bsl.2017.37

Chihara, C., 1974, “The semantic paradoxes: a diagnostic investigation”, The Philosophical Review 88 (4): 590–618. DOI: http://dx.doi.org/10.2307/2184846

Cobreros, P., P. Égré, D. Ripley, and R. van Rooij, 2013, “Reaching transparent truth”, Mind 122 (488): 841–866. DOI: http://dx.doi.org/10.1093/mind/fzt110

Deutsch, H., 2010, “Diagnoalization and truth functional operators”, Analysis 70 (2): 215–217.

Dung, P. M., 1995, “On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games”, Artificial Intelligence 77 (2): 321–357. DOI: http://dx.doi.org/10.1016/0004-3702(94)00041-X

Eklund, M., 2002, “Inconsistent languages”, Philosophy and Phenomenological Research 64 (2): 251–275. DOI: http://dx.doi.org/10.1111/j.1933-1592.2002.tb00001.x

Grim, P., 1993, “Operators in the paradox of the knower”, Synthese 44 (3): 409–428. DOI: http://dx.doi.org/10.1007/BF01064487

Halbach, V., 1999, “Disquotationalism and infinite conjunctions”, Mind 108: 1–22. DOI: http://dx.doi.org/10.1093/mind/108.429.1

Halbach, V., 2009, “On the benfits of a reduction of modal predicates to modal operators”, pages 323–333 in A. Hieke and H. Leitgeb (eds.), Reduction, Abstraction, Analysis, Ontos Verlag.

Horsten, L., and H. Leigeb, 2001, “No future”, Journal of Philosophical Logic 30 (3): 259–265. DOI: http://dx.doi.org/10.1023/A:1017569601150

Ketland, J., 2005, “Yablo’s paradox and ω-inconsistency”, Synthese 145 (3): 295–302.

Montague, R., 1963, “Syntactical treatment of modality, with corollaries on reflection principles and finite axiomatizability”, Acta Philosophica Fennica 16: 153–167.

Neumann-Lara, V., 1971, “Seminúcleos de una digráfica”, Technical report, Anales del Instituto de Matemáticas II, Universidad Nacional Autónoma México.

Patterson, D., 2009, “Inconsistency theory of semantic paradox”, Philosophy and Phenomenological Research 79 (2): 387–422. DOI: http://dx.doi.org/10.1111/j.1933-1592.2009.00283.x

Perlis, D., 1988, “Languages with self-reference II: knowledge, belief, and modality”, Arificial Intellgence 34 (2): 179–212. DOI: http://dx.doi.org/10.1016/0004-3702(88)90038-0

Picollo, L., and T. Schindler, 2018, “Disquotation and infinite conjunctions”, Erkenntins 83 (5): 899–928. DOI: http://dx.doi.org/10.1007/s10670-017-9919-x

Prior, A. N., 1961, “On a family of paradoxes”, Notre Dame Journal of Formal Logic 2 (1): 16–32. DOI: http://dx.doi.org/10.1305/ndjfl/1093956750

Quine, W. V. O., 1970, Philosophy of logic. Harvard University Press, Cambridge.

Rabern, L., B. Rabern, and M. Macauley, 2013, “Dangerous reference graphs and semantic paradoxes”, Journal of Philosophical Logic 42 (5): 727–765. DOI: http://dx.doi.org/10.1007/s10992-012-9246-2

Rahman, S., T. Tulenheimo, and E. Genot (eds.), 2008, Unity, Truth and the Liar, Springer. DOI: http://dx.doi.org/10.1007/978-1-4020-8468-3

Read, S., 2002, “The liar paradox from John Buridan back to Thomas Bradwardine”, Vivarium 40 (2): 189–218. DOI: http://dx.doi.org/10.1163/156853402320901812

Reinhardt, W. N., 1980, “Necessity predicates and operators”, Journal of Philosophical Logic 9 (4): 437–450. DOI: http://dx.doi.org/10.1007/BF00262865

Ripley, D., 2012, “Conservatively extending classical logic with transparent truth”, The Review of Symbolic Logic 5 (2): 354–378. DOI: http://dx.doi.org/10.1017/S1755020312000056

Ripley, D., 2013, “Paradoxes and failures of cut”, Australasian Journal of Philosophy 91 (1): 139–164. DOI: http://dx.doi.org/10.1080/00048402.2011.630010

von Neumann, J., and O. Morgenstern, 1944, Theory of Games and Economic Behavior, Princeton University Press.

Pobrania

  • PDF (English)

Opublikowane

02.01.2024

Jak cytować

1.
WALICKI, Michał. Paradoxes versus Contradictions in Logic of Sentential Operators. Logic and Logical Philosophy [online]. 2 styczeń 2024, s. 1–44. [udostępniono 4.7.2025]. DOI 10.12775/LLP.2024.002.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Prace online

Dział

Artykuły

Licencja

Prawa autorskie (c) 2024 Michał Walicki

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 1476
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

sentential operators, semantic and intensional paradoxes, classical logic, paraconsistent semantics, (semi)kernels of digraphs
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa