Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

An Expressivist Strategy to Understand Logical Forms
  • Home
  • /
  • An Expressivist Strategy to Understand Logical Forms
  1. Home /
  2. Archives /
  3. Vol. 32 No. 3 (2023): September /
  4. Articles

An Expressivist Strategy to Understand Logical Forms

Authors

  • Giacomo Turbanti Department of Civilizations and Forms of Knowledge, University of Pisa https://orcid.org/0000-0002-0580-7220

DOI:

https://doi.org/10.12775/LLP.2023.005

Keywords

logical expressivism, logical form, Begriffsschrift, sequent calculus, display logic

Abstract

This paper discusses a generalization of logical expressivism. It is shown that, in the wide sense defined here, the expressivist approach is neutral with respect to different theories of inference and offers a natural framework for understanding logical forms and their function. An expressivist strategy for explaining the development of logical forms is then applied to the analysis of Frege’s Begriffsschrift, Gentzen’s sequent calculus and Belnap’s display logic.

References

Belnap, N. D., 1982, “Display logic”, Journal of Philosophical Logic, 11 (4): 375–417. DOI: http://dx.doi.org/10.1007/BF00284976

Belnap, N. D., 1996, “The display problem”, pages 79–93 in H. Wansing (ed.), Proof Theory of Modal Logic, Dordrecht: Kluwer Academic Publishers. DOI: http://dx.doi.org/10.1007/978-94-017-2798-3_6

Brandom, R., 1994, Making It Explicit: Reasoning, Representing, and Discursive Commitment, Cambridge (MA): Harvard University Press.

Brandom, R., (2008), Between Saying and Doing, Oxford: Oxford University Press. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199542871.001.0001

Frege, G., 1879, Begriffsschrift, eine der arithmetische nachgebildete Formel sprache des Reinen Denkens, Halle: Nebert. English translation, Begriffsschrift, A Formula Language, Modeled Upon That of Arithmetic, for Pure Thought, pages 1–82 in J. van Heijenoort (ed.), 1967, From Frege to Gödel, Cambridge (MA): Harvard University Press.

Frege, G., 1893/1903, Grundgesetze der Arithmetik, Jena: Verlag Hermann Pohle, Band I/II. English translation in P. Ebert, M. Rossberg and C. Wright (eds.), 2013, Basic Laws of Arithmetic: Derived Using Concept-Script, Oxford: Oxford University Press.

Frege, G., 1919, “Die Verneinung”, Beiträge zur Philosophie des deutschen Idealismus, 1(3–4): 143–157. English translation, “Negation”, pages 117–135 in P. Geach and M. Black (eds.), 1960, Translations from the Philosophical Writings of Gottlob Frege, Oxford: Blackwell.

Frege, G., 1979, Posthumous Writings, Oxford: Blackwell.

Gentzen, G., 1934/35, “Untersuchungen über das logische Schliessen”, Mathematische Zeitschrift, 39: 176–210, 405–431. English translation, “Investigation into logical deduction”, pages 68–131 in M. E. Szabo (ed.), 1969, The Collected Papers of Gerhard Gentzen, Amsterdam: North Holland.

Goré, R., 1998a, “Substructural logics on display”, Logic Journal of the IGPL, 6 (3): 451–504. DOI: http://dx.doi.org/10.1093/jigpal/6.3.451

Goré, R., 1998b, “Gaggles, Gentzen and Galois: How to display your favourite substructural logic”, Logic Journal of the IGPL, 6 (5): 669–694. DOI: http://dx.doi.org/10.1093/jigpal/6.5.669

Hertz, P., 1922, “Über Axiomensysteme für beliebige Satzsysteme. I. Teil. Sätze ersten Grades. (Über die Axiomensysteme von der kleinsten Satzzahl und den Begriff des idealen Elementes)”, Mathematische Annalen, 87: 246–269.

English translation, “About axiomatic systems for arbitrary systems of sentences”, pages 11–29 in J. Y. Béziau (ed.), 2012, Universal Logic: An Anthology. From Paul Hertz to Dov Gabbay, Basel: Birkhäuser.

Iacona, A., 2018, Logical Form. Between Logic and Natural Language, Cham: Springer. DOI: http://dx.doi.org/10.1007/978-3-319-74154-3

Kreisel, G., 1971, “A survey of proof theory II”, pages 109–170 in J. Fenstad (ed.), Proceedings of the Second Scandinavian Logic Symposium, Amsterdam: North-Holland. DOI: http://dx.doi.org/10.1016/S0049-237X(08)70845-0

Macbeth, D., 2005, Frege’s Logic, Cambridge (MA): Harvard University Press. DOI: http://dx.doi.org/10.4159/9780674040397

Negri, S., and J. von Plato, 2001, Structural Proof-Theory, Cambridge: Cambridge University Press. DOI: http://dx.doi.org/10.1017/CBO9780511527340

Peregrin, J., 2014, Inferentialism: Why Rules Matter, New York (NY): Palgrave-Macmillan. DOI: http://dx.doi.org/10.1057/9781137452962

Prawitz, D., 1965, Natural Deduction: A Proof-Theoretical Study, Stockholm: Almqvist & Wiksell. Reprinted by Dover Publications, Mineola (NY), 2006.

Prawitz, D., 1971, “Ideas and results in proof theory”, pages 235–307 in J. E. Fenstad (ed.), Proceedings of the Second Scandinavian Logic Symposium (Oslo 1970), Amsterdam: North-Holland. DOI: http://dx.doi.org/10.1016/S0049-237X(08)70849-8

Restall, G., 1998, “Displaying and deciding substructural logics 1: Logics with contraposition”, Journal of Philosophical Logic, 27 (2): 179–216. DOI: http://dx.doi.org/10.1023/A:1017998605966

Ricketts, T., and J. Levine, 1996, “Logic and truth in Frege”, Proceedings of the Aristotelian Society, Supplementary Volumes, 70: 121–175. DOI: http://dx.doi.org/10.1093/aristoteliansupp/70.1.121

Logic and Logical Philosophy

Downloads

  • PDF

Published

2023-05-16

How to Cite

1.
TURBANTI, Giacomo. An Expressivist Strategy to Understand Logical Forms. Logic and Logical Philosophy. Online. 16 May 2023. Vol. 32, no. 3, pp. 511-525. [Accessed 23 May 2025]. DOI 10.12775/LLP.2023.005.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 32 No. 3 (2023): September

Section

Articles

License

Copyright (c) 2023 Giacomo Turbanti

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 845
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

logical expressivism, logical form, Begriffsschrift, sequent calculus, display logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop